
Cell-MPI
Mastering the Cell Broadband Engine architecture through a Boost based

parallel communication library

Sebastian Schaetz, Joel Falcou,
Lionel Lacassagne

Digiteo Foundation, LRI - University

Paris South XI, CEA LIST

May 17, 2011

Why a talk about a library for the Cell in 2011

� Heterogeneous and composable architectures are not uncommon,
powerful and worth studying.

� We present useful concepts that apply to all of them.

� We illustrate the lessons we learned as we used Boost libraries on a
constricted platform and

� elaborate what choices we had to make and why we made them as
we created a Boost-like library for this platform.

2 of 49

Why a talk about a library for the Cell in 2011

� Heterogeneous and composable architectures are not uncommon,
powerful and worth studying.

� We present useful concepts that apply to all of them.

� We illustrate the lessons we learned as we used Boost libraries on a
constricted platform and

� elaborate what choices we had to make and why we made them as
we created a Boost-like library for this platform.

2 of 49

Why a talk about a library for the Cell in 2011

� Heterogeneous and composable architectures are not uncommon,
powerful and worth studying.

� We present useful concepts that apply to all of them.

� We illustrate the lessons we learned as we used Boost libraries on a
constricted platform and

� elaborate what choices we had to make and why we made them as
we created a Boost-like library for this platform.

2 of 49

Why a talk about a library for the Cell in 2011

� Heterogeneous and composable architectures are not uncommon,
powerful and worth studying.

� We present useful concepts that apply to all of them.

� We illustrate the lessons we learned as we used Boost libraries on a
constricted platform and

� elaborate what choices we had to make and why we made them as
we created a Boost-like library for this platform.

2 of 49

Cell Broadband Engine - Schematic

3 of 49

A similar architecture - Multi-GPU Schematic

4 of 49

Cell Broadband Engine - The good stu�

� Power architecture core paired with up to 8 streamlined vector
co-processors: 204.8 GFlops/s (single) 102.4 GFlops/s (double)

� High data transfer bandwidth: theoretical 204.8 GB/s

� Good performance/watt (0.87 double precision GFlops/s per Watt
for IBM BladeCenter QS22)

Due to these advantages, the CBE is a good �t for multimedia and
vector processing applications as well as scienti�c computation.

5 of 49

Cell Broadband Engine - The bad stu�

� Distributed system on one chip, explicit communication necessary
� SPE Memory limitations

� 256kB for code and data per SPE
� no over�ow detection

� Communication intricacies
� packet size
� address alignment
� explicit DMA

� Optimization for speed
� SIMD (assembler-like)
� convoluted pipeline mechanism

Due to these restrictions, the complexity of programming the CBE is
comparable to writing code for embedded systems.

6 of 49

Writing code for the CBE

� PPE and SPE entry points in separate main functions

� Compilers: ppu-gcc, spu-gcc

� SPE object �le passed to ppu-embedspu to generate library
exports symbol that is accessible from PPE code

� PPE creates thread for each SPE and loads the symbol

� Argument passed to thread is accessible in SPE through argument
vector

� Usual approach: argument is pointer to structure in main memory;
structure is loaded to SPE through explicit DMA call:

1 /* DMA control block information from system memory. */
2 mfc_get((void*)&parms, parm_ptr, (sizeof(parms)+15)&~0xF, tag, td, rd);
3 mfc_write_tag_mask(1<<tag);
4 mfc_read_tag_status_all(); /* Wait for DMA to complete */

7 of 49

Writing code for the CBE

� PPE and SPE entry points in separate main functions

� Compilers: ppu-gcc, spu-gcc

� SPE object �le passed to ppu-embedspu to generate library
exports symbol that is accessible from PPE code

� PPE creates thread for each SPE and loads the symbol

� Argument passed to thread is accessible in SPE through argument
vector

� Usual approach: argument is pointer to structure in main memory;
structure is loaded to SPE through explicit DMA call:

1 /* DMA control block information from system memory. */
2 mfc_get((void*)&parms, parm_ptr, (sizeof(parms)+15)&~0xF, tag, td, rd);
3 mfc_write_tag_mask(1<<tag);
4 mfc_read_tag_status_all(); /* Wait for DMA to complete */

7 of 49

Writing code for the CBE

� PPE and SPE entry points in separate main functions

� Compilers: ppu-gcc, spu-gcc

� SPE object �le passed to ppu-embedspu to generate library
exports symbol that is accessible from PPE code

� PPE creates thread for each SPE and loads the symbol

� Argument passed to thread is accessible in SPE through argument
vector

� Usual approach: argument is pointer to structure in main memory;
structure is loaded to SPE through explicit DMA call:

1 /* DMA control block information from system memory. */
2 mfc_get((void*)&parms, parm_ptr, (sizeof(parms)+15)&~0xF, tag, td, rd);
3 mfc_write_tag_mask(1<<tag);
4 mfc_read_tag_status_all(); /* Wait for DMA to complete */

7 of 49

Writing code for the CBE

� PPE and SPE entry points in separate main functions

� Compilers: ppu-gcc, spu-gcc

� SPE object �le passed to ppu-embedspu to generate library
exports symbol that is accessible from PPE code

� PPE creates thread for each SPE and loads the symbol

� Argument passed to thread is accessible in SPE through argument
vector

� Usual approach: argument is pointer to structure in main memory;
structure is loaded to SPE through explicit DMA call:

1 /* DMA control block information from system memory. */
2 mfc_get((void*)&parms, parm_ptr, (sizeof(parms)+15)&~0xF, tag, td, rd);
3 mfc_write_tag_mask(1<<tag);
4 mfc_read_tag_status_all(); /* Wait for DMA to complete */

7 of 49

Writing code for the CBE

� PPE and SPE entry points in separate main functions

� Compilers: ppu-gcc, spu-gcc

� SPE object �le passed to ppu-embedspu to generate library
exports symbol that is accessible from PPE code

� PPE creates thread for each SPE and loads the symbol

� Argument passed to thread is accessible in SPE through argument
vector

� Usual approach: argument is pointer to structure in main memory;
structure is loaded to SPE through explicit DMA call:

1 /* DMA control block information from system memory. */
2 mfc_get((void*)&parms, parm_ptr, (sizeof(parms)+15)&~0xF, tag, td, rd);
3 mfc_write_tag_mask(1<<tag);
4 mfc_read_tag_status_all(); /* Wait for DMA to complete */

7 of 49

Writing code for the CBE

� PPE and SPE entry points in separate main functions

� Compilers: ppu-gcc, spu-gcc

� SPE object �le passed to ppu-embedspu to generate library
exports symbol that is accessible from PPE code

� PPE creates thread for each SPE and loads the symbol

� Argument passed to thread is accessible in SPE through argument
vector

� Usual approach: argument is pointer to structure in main memory;
structure is loaded to SPE through explicit DMA call:

1 /* DMA control block information from system memory. */
2 mfc_get((void*)&parms, parm_ptr, (sizeof(parms)+15)&~0xF, tag, td, rd);
3 mfc_write_tag_mask(1<<tag);
4 mfc_read_tag_status_all(); /* Wait for DMA to complete */

7 of 49

Writing code for the CBE

� PPE and SPE entry points in separate main functions

� Compilers: ppu-gcc, spu-gcc

� SPE object �le passed to ppu-embedspu to generate library
exports symbol that is accessible from PPE code

� PPE creates thread for each SPE and loads the symbol

� Argument passed to thread is accessible in SPE through argument
vector

� Usual approach: argument is pointer to structure in main memory;
structure is loaded to SPE through explicit DMA call:

1 /* DMA control block information from system memory. */
2 mfc_get((void*)&parms, parm_ptr, (sizeof(parms)+15)&~0xF, tag, td, rd);
3 mfc_write_tag_mask(1<<tag);
4 mfc_read_tag_status_all(); /* Wait for DMA to complete */

7 of 49

Writing code for the CBE - continued

� "Getting started" can be tedious when developing for the CELL
since compilation procedure and startup are not trivial

� CMake to the rescue:
� Great tool to simplify basically any build-related steps
� Find all required libraries and binaries on the system
� Low-level macros: ACTIVATE_PPE_COMPILER(), ACTIVATE_SPE_COMPILER()
� ADD_SPE_MODULE(target symbol file0 file1 ... fileN)

� C++ and Boost to the rescue:
� Wrap recurring boilerplate code in clearly laid out functions and

classes
� A kernel function should be declared and behave like a free function

8 of 49

Writing code for the CBE - continued

� "Getting started" can be tedious when developing for the CELL
since compilation procedure and startup are not trivial

� CMake to the rescue:

� Great tool to simplify basically any build-related steps
� Find all required libraries and binaries on the system
� Low-level macros: ACTIVATE_PPE_COMPILER(), ACTIVATE_SPE_COMPILER()
� ADD_SPE_MODULE(target symbol file0 file1 ... fileN)

� C++ and Boost to the rescue:
� Wrap recurring boilerplate code in clearly laid out functions and

classes
� A kernel function should be declared and behave like a free function

8 of 49

Writing code for the CBE - continued

� "Getting started" can be tedious when developing for the CELL
since compilation procedure and startup are not trivial

� CMake to the rescue:
� Great tool to simplify basically any build-related steps

� Find all required libraries and binaries on the system
� Low-level macros: ACTIVATE_PPE_COMPILER(), ACTIVATE_SPE_COMPILER()
� ADD_SPE_MODULE(target symbol file0 file1 ... fileN)

� C++ and Boost to the rescue:
� Wrap recurring boilerplate code in clearly laid out functions and

classes
� A kernel function should be declared and behave like a free function

8 of 49

Writing code for the CBE - continued

� "Getting started" can be tedious when developing for the CELL
since compilation procedure and startup are not trivial

� CMake to the rescue:
� Great tool to simplify basically any build-related steps
� Find all required libraries and binaries on the system

� Low-level macros: ACTIVATE_PPE_COMPILER(), ACTIVATE_SPE_COMPILER()
� ADD_SPE_MODULE(target symbol file0 file1 ... fileN)

� C++ and Boost to the rescue:
� Wrap recurring boilerplate code in clearly laid out functions and

classes
� A kernel function should be declared and behave like a free function

8 of 49

Writing code for the CBE - continued

� "Getting started" can be tedious when developing for the CELL
since compilation procedure and startup are not trivial

� CMake to the rescue:
� Great tool to simplify basically any build-related steps
� Find all required libraries and binaries on the system
� Low-level macros: ACTIVATE_PPE_COMPILER(), ACTIVATE_SPE_COMPILER()

� ADD_SPE_MODULE(target symbol file0 file1 ... fileN)

� C++ and Boost to the rescue:
� Wrap recurring boilerplate code in clearly laid out functions and

classes
� A kernel function should be declared and behave like a free function

8 of 49

Writing code for the CBE - continued

� "Getting started" can be tedious when developing for the CELL
since compilation procedure and startup are not trivial

� CMake to the rescue:
� Great tool to simplify basically any build-related steps
� Find all required libraries and binaries on the system
� Low-level macros: ACTIVATE_PPE_COMPILER(), ACTIVATE_SPE_COMPILER()
� ADD_SPE_MODULE(target symbol file0 file1 ... fileN)

� C++ and Boost to the rescue:
� Wrap recurring boilerplate code in clearly laid out functions and

classes
� A kernel function should be declared and behave like a free function

8 of 49

Writing code for the CBE - continued

� "Getting started" can be tedious when developing for the CELL
since compilation procedure and startup are not trivial

� CMake to the rescue:
� Great tool to simplify basically any build-related steps
� Find all required libraries and binaries on the system
� Low-level macros: ACTIVATE_PPE_COMPILER(), ACTIVATE_SPE_COMPILER()
� ADD_SPE_MODULE(target symbol file0 file1 ... fileN)

� C++ and Boost to the rescue:

� Wrap recurring boilerplate code in clearly laid out functions and
classes

� A kernel function should be declared and behave like a free function

8 of 49

Writing code for the CBE - continued

� "Getting started" can be tedious when developing for the CELL
since compilation procedure and startup are not trivial

� CMake to the rescue:
� Great tool to simplify basically any build-related steps
� Find all required libraries and binaries on the system
� Low-level macros: ACTIVATE_PPE_COMPILER(), ACTIVATE_SPE_COMPILER()
� ADD_SPE_MODULE(target symbol file0 file1 ... fileN)

� C++ and Boost to the rescue:
� Wrap recurring boilerplate code in clearly laid out functions and

classes

� A kernel function should be declared and behave like a free function

8 of 49

Writing code for the CBE - continued

� "Getting started" can be tedious when developing for the CELL
since compilation procedure and startup are not trivial

� CMake to the rescue:
� Great tool to simplify basically any build-related steps
� Find all required libraries and binaries on the system
� Low-level macros: ACTIVATE_PPE_COMPILER(), ACTIVATE_SPE_COMPILER()
� ADD_SPE_MODULE(target symbol file0 file1 ... fileN)

� C++ and Boost to the rescue:
� Wrap recurring boilerplate code in clearly laid out functions and

classes
� A kernel function should be declared and behave like a free function

8 of 49

Cell-MPI Bootstrapping

� Launching a kernel function passing a data structure
struct mydatastruct { int x; int y; int z; };

� Kernel is de�ned with:

1 BEGIN_CELL_KERNEL()
2 {
3 mydatastruct * ptr;
4 SPE_Custom(ptr);
5 RETURN((ptr->x + ptr->y) * ptr->z);
6 }
7 END_CELL_KERNEL()

� In PPE code the kernel is registered with
PPE_REGISTER_KERNEL(kernel);

� The runtime is initialized with PPE_Init();

9 of 49

Cell-MPI Bootstrapping

� Launching a kernel function passing a data structure
struct mydatastruct { int x; int y; int z; };

� Kernel is de�ned with:

1 BEGIN_CELL_KERNEL()
2 {
3 mydatastruct * ptr;
4 SPE_Custom(ptr);
5 RETURN((ptr->x + ptr->y) * ptr->z);
6 }
7 END_CELL_KERNEL()

� In PPE code the kernel is registered with
PPE_REGISTER_KERNEL(kernel);

� The runtime is initialized with PPE_Init();

9 of 49

Cell-MPI Bootstrapping

� Launching a kernel function passing a data structure
struct mydatastruct { int x; int y; int z; };

� Kernel is de�ned with:

1 BEGIN_CELL_KERNEL()
2 {
3 mydatastruct * ptr;
4 SPE_Custom(ptr);
5 RETURN((ptr->x + ptr->y) * ptr->z);
6 }
7 END_CELL_KERNEL()

� In PPE code the kernel is registered with
PPE_REGISTER_KERNEL(kernel);

� The runtime is initialized with PPE_Init();

9 of 49

Cell-MPI Bootstrapping

� Launching a kernel function passing a data structure
struct mydatastruct { int x; int y; int z; };

� Kernel is de�ned with:

1 BEGIN_CELL_KERNEL()
2 {
3 mydatastruct * ptr;
4 SPE_Custom(ptr);
5 RETURN((ptr->x + ptr->y) * ptr->z);
6 }
7 END_CELL_KERNEL()

� In PPE code the kernel is registered with
PPE_REGISTER_KERNEL(kernel);

� The runtime is initialized with PPE_Init();

9 of 49

Cell-MPI Bootstrapping - continued

� The kernel is then called asynchronously:

1 mydatastruct mydata(1, 5, 7);
2 PPE_Run(kernel, mydata);

� The PPE can wait for kernel completion: PPE_Sync();

� and access the kernels return value:

1 int returnvalues[CBE_MPI_NUM_SPE];
2 PPE_Return(&returnvalues[0]);

� The runtime is �nalized with PPE_Finalize();

10 of 49

Cell-MPI Bootstrapping - continued

� The kernel is then called asynchronously:

1 mydatastruct mydata(1, 5, 7);
2 PPE_Run(kernel, mydata);

� The PPE can wait for kernel completion: PPE_Sync();

� and access the kernels return value:

1 int returnvalues[CBE_MPI_NUM_SPE];
2 PPE_Return(&returnvalues[0]);

� The runtime is �nalized with PPE_Finalize();

10 of 49

Cell-MPI Bootstrapping - continued

� The kernel is then called asynchronously:

1 mydatastruct mydata(1, 5, 7);
2 PPE_Run(kernel, mydata);

� The PPE can wait for kernel completion: PPE_Sync();

� and access the kernels return value:

1 int returnvalues[CBE_MPI_NUM_SPE];
2 PPE_Return(&returnvalues[0]);

� The runtime is �nalized with PPE_Finalize();

10 of 49

Cell-MPI Bootstrapping - continued

� The kernel is then called asynchronously:

1 mydatastruct mydata(1, 5, 7);
2 PPE_Run(kernel, mydata);

� The PPE can wait for kernel completion: PPE_Sync();

� and access the kernels return value:

1 int returnvalues[CBE_MPI_NUM_SPE];
2 PPE_Return(&returnvalues[0]);

� The runtime is �nalized with PPE_Finalize();

10 of 49

Cell-MPI Bootstrapping Mechanism

PPE_Init
- allocate thread- and control block

PPE_Run
- load SPE program
- init control block incl. user data
- create and start threads

SPE_Init
- load control block
- load user data

- wait for message from SPE
- send run message to SPE

- send message to PPE
- wait for message from PPE

SPE_Finalize
- send return value

runshutdown

PPE_Sync
- wait for return value, check for error

PPE_Finalize
- send message to shutdown kernel

synchronization

synchronization

after synchronization
a kernel can be
started again

fork

join

kernel user code

kernel
loop

11 of 49

Cell-MPI Bootstrapping - Boosti�ed

� A kernel can be declared in both PPE and SPE code with:

1 SPE_FUNCTION(kernel_, kernel, (int x) (int y) (int z));

� and implemented as a free function in SPE code

1 int kernel(int x, int y, int z)
2 {
3 return (x+y) * z;
4 }

� It can then be called as a free function from PPE code:

1 int * returnvalues = kernel(2, 5, 7);

� or asynchronously:

1 kernel_async(2, 5, 7);
2 PPE_Sync();

12 of 49

Cell-MPI Bootstrapping - Boosti�ed

� A kernel can be declared in both PPE and SPE code with:

1 SPE_FUNCTION(kernel_, kernel, (int x) (int y) (int z));

� and implemented as a free function in SPE code

1 int kernel(int x, int y, int z)
2 {
3 return (x+y) * z;
4 }

� It can then be called as a free function from PPE code:

1 int * returnvalues = kernel(2, 5, 7);

� or asynchronously:

1 kernel_async(2, 5, 7);
2 PPE_Sync();

12 of 49

Cell-MPI Bootstrapping - Boosti�ed

� A kernel can be declared in both PPE and SPE code with:

1 SPE_FUNCTION(kernel_, kernel, (int x) (int y) (int z));

� and implemented as a free function in SPE code

1 int kernel(int x, int y, int z)
2 {
3 return (x+y) * z;
4 }

� It can then be called as a free function from PPE code:

1 int * returnvalues = kernel(2, 5, 7);

� or asynchronously:

1 kernel_async(2, 5, 7);
2 PPE_Sync();

12 of 49

Cell-MPI Bootstrapping - Boosti�ed

� A kernel can be declared in both PPE and SPE code with:

1 SPE_FUNCTION(kernel_, kernel, (int x) (int y) (int z));

� and implemented as a free function in SPE code

1 int kernel(int x, int y, int z)
2 {
3 return (x+y) * z;
4 }

� It can then be called as a free function from PPE code:

1 int * returnvalues = kernel(2, 5, 7);

� or asynchronously:

1 kernel_async(2, 5, 7);
2 PPE_Sync();

12 of 49

So we do C++ but...

The architecture forces some restrictions especially on the SPE part of
the library:

� Compilation without run-time type information

� No dynamic memory allocation for predictable footprint

� Custom, lightweight STL compatible allocators

� Exception handling deactivated

13 of 49

So we do C++ but...

The architecture forces some restrictions especially on the SPE part of
the library:

� Compilation without run-time type information

� No dynamic memory allocation for predictable footprint

� Custom, lightweight STL compatible allocators

� Exception handling deactivated

13 of 49

So we do C++ but...

The architecture forces some restrictions especially on the SPE part of
the library:

� Compilation without run-time type information

� No dynamic memory allocation for predictable footprint

� Custom, lightweight STL compatible allocators

� Exception handling deactivated

13 of 49

So we do C++ but...

The architecture forces some restrictions especially on the SPE part of
the library:

� Compilation without run-time type information

� No dynamic memory allocation for predictable footprint

� Custom, lightweight STL compatible allocators

� Exception handling deactivated

13 of 49

Exception emulation

Due to architecture limitations we emulate exceptions:

� An exception stops the kernel and noti�es the PPE

� Only an error code is "thrown":

1 #define THROW(errno) {spe_errno = errno ; SPE_Finalize(-1); exit(0);}

� The PPE translates the error code into real exceptions:

1 struct spe_error_bundle
2 { std::vector<spe_error_data> exception_info; };

1 typedef boost::error_info<struct tag_spe_error_info_bundle,
2 spe_error_bundle> spe_error_info_bundle;

1 struct spe_runtime_exception : virtual boost::exception {};

14 of 49

Exception emulation

Due to architecture limitations we emulate exceptions:

� An exception stops the kernel and noti�es the PPE

� Only an error code is "thrown":

1 #define THROW(errno) {spe_errno = errno ; SPE_Finalize(-1); exit(0);}

� The PPE translates the error code into real exceptions:

1 struct spe_error_bundle
2 { std::vector<spe_error_data> exception_info; };

1 typedef boost::error_info<struct tag_spe_error_info_bundle,
2 spe_error_bundle> spe_error_info_bundle;

1 struct spe_runtime_exception : virtual boost::exception {};

14 of 49

Exception emulation

Due to architecture limitations we emulate exceptions:

� An exception stops the kernel and noti�es the PPE

� Only an error code is "thrown":

1 #define THROW(errno) {spe_errno = errno ; SPE_Finalize(-1); exit(0);}

� The PPE translates the error code into real exceptions:

1 struct spe_error_bundle
2 { std::vector<spe_error_data> exception_info; };

1 typedef boost::error_info<struct tag_spe_error_info_bundle,
2 spe_error_bundle> spe_error_info_bundle;

1 struct spe_runtime_exception : virtual boost::exception {};

14 of 49

Exception emulation

Due to architecture limitations we emulate exceptions:

� An exception stops the kernel and noti�es the PPE

� Only an error code is "thrown":

1 #define THROW(errno) {spe_errno = errno ; SPE_Finalize(-1); exit(0);}

� The PPE translates the error code into real exceptions:

1 struct spe_error_bundle
2 { std::vector<spe_error_data> exception_info; };

1 typedef boost::error_info<struct tag_spe_error_info_bundle,
2 spe_error_bundle> spe_error_info_bundle;

1 struct spe_runtime_exception : virtual boost::exception {};

14 of 49

Exception emulation

Due to architecture limitations we emulate exceptions:

� An exception stops the kernel and noti�es the PPE

� Only an error code is "thrown":

1 #define THROW(errno) {spe_errno = errno ; SPE_Finalize(-1); exit(0);}

� The PPE translates the error code into real exceptions:

1 struct spe_error_bundle
2 { std::vector<spe_error_data> exception_info; };

1 typedef boost::error_info<struct tag_spe_error_info_bundle,
2 spe_error_bundle> spe_error_info_bundle;

1 struct spe_runtime_exception : virtual boost::exception {};

14 of 49

Exception emulation - continued

� If desired SPE exceptions can interrupt PPE execution

� To de�ne errors we use the same trick as in boosti�ed
bootstrapping:

1 ERROR(MPI_TAG_MISMATCH, 7, "Send receive tag mismatch")
2 ERROR(BOOST_FUNCTION_BAD_CALL, 12, "Bad boost function call")
3 ERROR(BAD_ALLOC, 14, "bad alloc")

� Compiled with the SPE compiler (#ifdef _SPE_) generates:

1 enum { MPI_TAG_MISMATCH = 7, BOOST_FUNCTION_BAD_CALL = 12,
2 BAD_ALLOC = 14 };

� And with the PPE compiler generates a vector of objects:

1 struct spe_error_struct
2 { int id; const char * symbol; const char * message; };

15 of 49

Exception emulation - continued

� If desired SPE exceptions can interrupt PPE execution

� To de�ne errors we use the same trick as in boosti�ed
bootstrapping:

1 ERROR(MPI_TAG_MISMATCH, 7, "Send receive tag mismatch")
2 ERROR(BOOST_FUNCTION_BAD_CALL, 12, "Bad boost function call")
3 ERROR(BAD_ALLOC, 14, "bad alloc")

� Compiled with the SPE compiler (#ifdef _SPE_) generates:

1 enum { MPI_TAG_MISMATCH = 7, BOOST_FUNCTION_BAD_CALL = 12,
2 BAD_ALLOC = 14 };

� And with the PPE compiler generates a vector of objects:

1 struct spe_error_struct
2 { int id; const char * symbol; const char * message; };

15 of 49

Exception emulation - continued

� If desired SPE exceptions can interrupt PPE execution

� To de�ne errors we use the same trick as in boosti�ed
bootstrapping:

1 ERROR(MPI_TAG_MISMATCH, 7, "Send receive tag mismatch")
2 ERROR(BOOST_FUNCTION_BAD_CALL, 12, "Bad boost function call")
3 ERROR(BAD_ALLOC, 14, "bad alloc")

� Compiled with the SPE compiler (#ifdef _SPE_) generates:

1 enum { MPI_TAG_MISMATCH = 7, BOOST_FUNCTION_BAD_CALL = 12,
2 BAD_ALLOC = 14 };

� And with the PPE compiler generates a vector of objects:

1 struct spe_error_struct
2 { int id; const char * symbol; const char * message; };

15 of 49

Exception emulation - continued

� If desired SPE exceptions can interrupt PPE execution

� To de�ne errors we use the same trick as in boosti�ed
bootstrapping:

1 ERROR(MPI_TAG_MISMATCH, 7, "Send receive tag mismatch")
2 ERROR(BOOST_FUNCTION_BAD_CALL, 12, "Bad boost function call")
3 ERROR(BAD_ALLOC, 14, "bad alloc")

� Compiled with the SPE compiler (#ifdef _SPE_) generates:

1 enum { MPI_TAG_MISMATCH = 7, BOOST_FUNCTION_BAD_CALL = 12,
2 BAD_ALLOC = 14 };

� And with the PPE compiler generates a vector of objects:

1 struct spe_error_struct
2 { int id; const char * symbol; const char * message; };

15 of 49

Exception emulation - continued

� If desired SPE exceptions can interrupt PPE execution

� To de�ne errors we use the same trick as in boosti�ed
bootstrapping:

1 ERROR(MPI_TAG_MISMATCH, 7, "Send receive tag mismatch")
2 ERROR(BOOST_FUNCTION_BAD_CALL, 12, "Bad boost function call")
3 ERROR(BAD_ALLOC, 14, "bad alloc")

� Compiled with the SPE compiler (#ifdef _SPE_) generates:

1 enum { MPI_TAG_MISMATCH = 7, BOOST_FUNCTION_BAD_CALL = 12,
2 BAD_ALLOC = 14 };

� And with the PPE compiler generates a vector of objects:

1 struct spe_error_struct
2 { int id; const char * symbol; const char * message; };

15 of 49

Unit Testing

� Boost.Test is great but builds don't �t SPEs:
libboost_unit_test_framework.so.1.45.0: 998kB

� First idea: boost/detail/lightweight_test.hpp

misses a lot of the Boost.Test goodness

Enter SPE-Unit:

� Compromise between lightweight and feature-complete

� Designed after Boost.Test

16 of 49

Unit Testing

� Boost.Test is great but builds don't �t SPEs:
libboost_unit_test_framework.so.1.45.0: 998kB

� First idea: boost/detail/lightweight_test.hpp

misses a lot of the Boost.Test goodness

Enter SPE-Unit:

� Compromise between lightweight and feature-complete

� Designed after Boost.Test

16 of 49

Unit Testing

� Boost.Test is great but builds don't �t SPEs:
libboost_unit_test_framework.so.1.45.0: 998kB

� First idea: boost/detail/lightweight_test.hpp

misses a lot of the Boost.Test goodness

Enter SPE-Unit:

� Compromise between lightweight and feature-complete

� Designed after Boost.Test

16 of 49

Unit Testing

� Boost.Test is great but builds don't �t SPEs:
libboost_unit_test_framework.so.1.45.0: 998kB

� First idea: boost/detail/lightweight_test.hpp

misses a lot of the Boost.Test goodness

Enter SPE-Unit:

� Compromise between lightweight and feature-complete

� Designed after Boost.Test

16 of 49

Unit Testing

� Boost.Test is great but builds don't �t SPEs:
libboost_unit_test_framework.so.1.45.0: 998kB

� First idea: boost/detail/lightweight_test.hpp

misses a lot of the Boost.Test goodness

Enter SPE-Unit:

� Compromise between lightweight and feature-complete

� Designed after Boost.Test

16 of 49

Unit Testing

� Boost.Test is great but builds don't �t SPEs:
libboost_unit_test_framework.so.1.45.0: 998kB

� First idea: boost/detail/lightweight_test.hpp

misses a lot of the Boost.Test goodness

Enter SPE-Unit:

� Compromise between lightweight and feature-complete

� Designed after Boost.Test

16 of 49

Unit Testing - SPE Unit Features

� Only one test suite is available: CBE_MPI_SPEUNIT_AUTO_TEST_SUITE();

� Tests are started explicitly:

1 uint32_t result = CBE_MPI_SPEUNIT_RUN_TEST_SUITE();
2 SET_RETURN_VALUE(result);

� The powerfull AUTO_TEST_CASE_TEMPLATE(testname, T, typelist)

and a normal template TEST_CASE_TEMPLATE(testname) are included

� Di�erent test tool levels are supported: WARN_*, CHECK_*, REQUIRE_*

� Strings can be disabled to reduce overhead (silent mode)

� Emulated SPE exceptions can be validated with test tools like
CBE_MPI_REQUIRE_THROW

17 of 49

Unit Testing - SPE Unit Features

� Only one test suite is available: CBE_MPI_SPEUNIT_AUTO_TEST_SUITE();

� Tests are started explicitly:

1 uint32_t result = CBE_MPI_SPEUNIT_RUN_TEST_SUITE();
2 SET_RETURN_VALUE(result);

� The powerfull AUTO_TEST_CASE_TEMPLATE(testname, T, typelist)

and a normal template TEST_CASE_TEMPLATE(testname) are included

� Di�erent test tool levels are supported: WARN_*, CHECK_*, REQUIRE_*

� Strings can be disabled to reduce overhead (silent mode)

� Emulated SPE exceptions can be validated with test tools like
CBE_MPI_REQUIRE_THROW

17 of 49

Unit Testing - SPE Unit Features

� Only one test suite is available: CBE_MPI_SPEUNIT_AUTO_TEST_SUITE();

� Tests are started explicitly:

1 uint32_t result = CBE_MPI_SPEUNIT_RUN_TEST_SUITE();
2 SET_RETURN_VALUE(result);

� The powerfull AUTO_TEST_CASE_TEMPLATE(testname, T, typelist)

and a normal template TEST_CASE_TEMPLATE(testname) are included

� Di�erent test tool levels are supported: WARN_*, CHECK_*, REQUIRE_*

� Strings can be disabled to reduce overhead (silent mode)

� Emulated SPE exceptions can be validated with test tools like
CBE_MPI_REQUIRE_THROW

17 of 49

Unit Testing - SPE Unit Features

� Only one test suite is available: CBE_MPI_SPEUNIT_AUTO_TEST_SUITE();

� Tests are started explicitly:

1 uint32_t result = CBE_MPI_SPEUNIT_RUN_TEST_SUITE();
2 SET_RETURN_VALUE(result);

� The powerfull AUTO_TEST_CASE_TEMPLATE(testname, T, typelist)

and a normal template TEST_CASE_TEMPLATE(testname) are included

� Di�erent test tool levels are supported: WARN_*, CHECK_*, REQUIRE_*

� Strings can be disabled to reduce overhead (silent mode)

� Emulated SPE exceptions can be validated with test tools like
CBE_MPI_REQUIRE_THROW

17 of 49

Unit Testing - SPE Unit Features

� Only one test suite is available: CBE_MPI_SPEUNIT_AUTO_TEST_SUITE();

� Tests are started explicitly:

1 uint32_t result = CBE_MPI_SPEUNIT_RUN_TEST_SUITE();
2 SET_RETURN_VALUE(result);

� The powerfull AUTO_TEST_CASE_TEMPLATE(testname, T, typelist)

and a normal template TEST_CASE_TEMPLATE(testname) are included

� Di�erent test tool levels are supported: WARN_*, CHECK_*, REQUIRE_*

� Strings can be disabled to reduce overhead (silent mode)

� Emulated SPE exceptions can be validated with test tools like
CBE_MPI_REQUIRE_THROW

17 of 49

Unit Testing - SPE Unit Features

� Only one test suite is available: CBE_MPI_SPEUNIT_AUTO_TEST_SUITE();

� Tests are started explicitly:

1 uint32_t result = CBE_MPI_SPEUNIT_RUN_TEST_SUITE();
2 SET_RETURN_VALUE(result);

� The powerfull AUTO_TEST_CASE_TEMPLATE(testname, T, typelist)

and a normal template TEST_CASE_TEMPLATE(testname) are included

� Di�erent test tool levels are supported: WARN_*, CHECK_*, REQUIRE_*

� Strings can be disabled to reduce overhead (silent mode)

� Emulated SPE exceptions can be validated with test tools like
CBE_MPI_REQUIRE_THROW

17 of 49

Unit Testing - Example

1 typedef boost::mpl::vector_c<int,1,2,4,8,16> aligned_alloc_alignments;
2

3 CBE_MPI_SPEUNIT_AUTO_TEST_SUITE();
4

5 CBE_MPI_SPEUNIT_AUTO_TEST_CASE_TEMPLATE(aligned_malloc_free_test, T,
6 aligned_alloc_alignments)
7 {
8 aligned_ptr<void,T::value> ptr = aligned_malloc<T::value>(T::value);
9 CBE_MPI_SPEUNIT_REQUIRE_EQUAL(is_aligned<T::value>(ptr.get()),true);

10 cbe_mpi::aligned_free(ptr);
11 CBE_MPI_SPEUNIT_REQUIRE_EQUAL(ptr.get(),((void*)(0)));
12 }
13

14 int kernel(void)
15 {
16 uint32_t result = CBE_MPI_SPEUNIT_RUN_TEST_SUITE();
17 SET_RETURN_VALUE(result);
18 }

18 of 49

Data Transfer - Single Bu�er

ii = in.get();
oo = out.get();

for(int i=0; i<iterations; i++) {

 spe_ppe_get_c(in.get(), cd->inbuf1+(SPE_Rank()+i*SPE_Size())*slicesize*sizeof(float),
 slicesize_padded*sizeof(float));

 harris_simd(ii, oo, cd->slice_dimx, cd->slice_dimy, 0, PADY, buf1.get(), buf2.get(), buf3.get());

 spe_ppe_put_c(cd->outbuf1+(SPE_Rank()+i*SPE_Size())*slicesize*sizeof(float) +
 (cd->slice_dimx*PADY)*sizeof(float), oo, slicesize*sizeof(float));
}

19 of 49

Data Transfer - Single Bu�er

calc

load

store

ii = in.get();
oo = out.get();

for(int i=0; i<iterations; i++) {

 spe_ppe_get_c(in.get(), cd->inbuf1+(SPE_Rank()+i*SPE_Size())*slicesize*sizeof(float),
 slicesize_padded*sizeof(float));

 harris_simd(ii, oo, cd->slice_dimx, cd->slice_dimy, 0, PADY, buf1.get(), buf2.get(), buf3.get());

 spe_ppe_put_c(cd->outbuf1+(SPE_Rank()+i*SPE_Size())*slicesize*sizeof(float) +
 (cd->slice_dimx*PADY)*sizeof(float), oo, slicesize*sizeof(float));
}

20 of 49

Data Transfer

load1 compute1 store1 load2 compute2 store2

21 of 49

Data Transfer

load1 compute1

load2 compute2

store1load3

store2

compute3

load4

store3

compute4 store4

lead-in optimal overlap lead-out

load1 compute1 store1 load2 compute2 store2

22 of 49

Data Transfer - Double Bu�ering
spe_ppe_get_async_c(in1.get(), cd->inbuf1+SPE_Rank()*slicesize*sizeof(float), slicesize_padded*sizeof(float), 9);

for(int i=0; i<iterations; i++) {
 if(i%2 == 0) {
 spe_ppe_get_async_c(in2.get(), cd->inbuf1+(SPE_Rank()+(i+1)*SPE_Size())*slicesize*sizeof(float),
 slicesize_padded*sizeof(float), 10);

 dma_synchronize_c(9); dma_synchronize_c(11);
 ii = in1.get(); oo = out1.get();
 } else {
 spe_ppe_get_async_c(in1.get(), cd->inbuf1+(SPE_Rank()+(i+1)*SPE_Size())*slicesize*sizeof(float),
 slicesize_padded*sizeof(float), 9);

 dma_synchronize_c(10); dma_synchronize_c(12);
 ii = in2.get(); oo = out2.get();
 }

 harris_simd(ii, oo, cd->slice_dimx, cd->slice_dimy, 0, PADY, buf1.get(), buf2.get(), buf3.get());

 if(i%2 == 0) {
 spe_ppe_put_async_c(cd->outbuf1+(SPE_Rank()+i*SPE_Size())* slicesize*sizeof(float) +
 (cd->slice_dimx*PADY)*sizeof(float), out1.get(), slicesize*sizeof(float), 11);
 } else {
 spe_ppe_put_async_c(cd->outbuf1+(SPE_Rank()+i*SPE_Size())* slicesize*sizeof(float) +
 (cd->slice_dimx*PADY)*sizeof(float), out2.get(), slicesize*sizeof(float), 12);
 }
}

spe_ppe_put_c(cd->outbuf1 + (SPE_Rank()+((iterations-1)*SPE_Size())) * slicesize*sizeof(float) +
 (cd->slice_dimx*PADY)*sizeof(float), oo, slicesize*sizeof(float));

23 of 49

Data Transfer - Double Bu�ering
spe_ppe_get_async_c(in1.get(), cd->inbuf1+SPE_Rank()*slicesize*sizeof(float), slicesize_padded*sizeof(float), 9);

for(int i=0; i<iterations; i++) {
 if(i%2 == 0) {
 spe_ppe_get_async_c(in2.get(), cd->inbuf1+(SPE_Rank()+(i+1)*SPE_Size())*slicesize*sizeof(float),
 slicesize_padded*sizeof(float), 10);

 dma_synchronize_c(9); dma_synchronize_c(11);
 ii = in1.get(); oo = out1.get();
 } else {
 spe_ppe_get_async_c(in1.get(), cd->inbuf1+(SPE_Rank()+(i+1)*SPE_Size())*slicesize*sizeof(float),
 slicesize_padded*sizeof(float), 9);

 dma_synchronize_c(10); dma_synchronize_c(12);
 ii = in2.get(); oo = out2.get();
 }

 harris_simd(ii, oo, cd->slice_dimx, cd->slice_dimy, 0, PADY, buf1.get(), buf2.get(), buf3.get());

 if(i%2 == 0) {
 spe_ppe_put_async_c(cd->outbuf1+(SPE_Rank()+i*SPE_Size())* slicesize*sizeof(float) +
 (cd->slice_dimx*PADY)*sizeof(float), out1.get(), slicesize*sizeof(float), 11);
 } else {
 spe_ppe_put_async_c(cd->outbuf1+(SPE_Rank()+i*SPE_Size())* slicesize*sizeof(float) +
 (cd->slice_dimx*PADY)*sizeof(float), out2.get(), slicesize*sizeof(float), 12);
 }
}

spe_ppe_put_c(cd->outbuf1 + (SPE_Rank()+((iterations-1)*SPE_Size())) * slicesize*sizeof(float) +
 (cd->slice_dimx*PADY)*sizeof(float), oo, slicesize*sizeof(float));

lead-in

lead-out

calc

load,
sync

store

24 of 49

Double Bu�ering - Operations - Input Segment

� Start loading �rst segment (lead-in)

operator =()

� Start loading next segment

operator ++(int)

� Wait for segment to be ready for computation

operator *()

� Signal that computation on current segment is �nished

operator ++(int)

� Check if end of data is reached

operator ==()

25 of 49

Double Bu�ering - Operations - Input Segment

� Start loading �rst segment (lead-in)

operator =()

� Start loading next segment

operator ++(int)

� Wait for segment to be ready for computation

operator *()

� Signal that computation on current segment is �nished

operator ++(int)

� Check if end of data is reached

operator ==()

25 of 49

Double Bu�ering - Operations - Input Segment

� Start loading �rst segment (lead-in)

operator =()

� Start loading next segment

operator ++(int)

� Wait for segment to be ready for computation

operator *()

� Signal that computation on current segment is �nished

operator ++(int)

� Check if end of data is reached

operator ==()

25 of 49

Double Bu�ering - Operations - Input Segment

� Start loading �rst segment (lead-in)

operator =()

� Start loading next segment

operator ++(int)

� Wait for segment to be ready for computation

operator *()

� Signal that computation on current segment is �nished

operator ++(int)

� Check if end of data is reached

operator ==()

25 of 49

Double Bu�ering - Operations - Input Segment

� Start loading �rst segment (lead-in)

operator =()

� Start loading next segment

operator ++(int)

� Wait for segment to be ready for computation

operator *()

� Signal that computation on current segment is �nished

operator ++(int)

� Check if end of data is reached

operator ==()

25 of 49

Double Bu�ering - Operations - Input Segment

� Start loading �rst segment (lead-in)
operator =()

� Start loading next segment

operator ++(int)

� Wait for segment to be ready for computation

operator *()

� Signal that computation on current segment is �nished

operator ++(int)

� Check if end of data is reached

operator ==()

25 of 49

Double Bu�ering - Operations - Input Segment

� Start loading �rst segment (lead-in)
operator =()

� Start loading next segment
operator ++(int)

� Wait for segment to be ready for computation

operator *()

� Signal that computation on current segment is �nished

operator ++(int)

� Check if end of data is reached

operator ==()

25 of 49

Double Bu�ering - Operations - Input Segment

� Start loading �rst segment (lead-in)
operator =()

� Start loading next segment
operator ++(int)

� Wait for segment to be ready for computation
operator *()

� Signal that computation on current segment is �nished

operator ++(int)

� Check if end of data is reached

operator ==()

25 of 49

Double Bu�ering - Operations - Input Segment

� Start loading �rst segment (lead-in)
operator =()

� Start loading next segment
operator ++(int)

� Wait for segment to be ready for computation
operator *()

� Signal that computation on current segment is �nished
operator ++(int)

� Check if end of data is reached

operator ==()

25 of 49

Double Bu�ering - Operations - Input Segment

� Start loading �rst segment (lead-in)
operator =()

� Start loading next segment
operator ++(int)

� Wait for segment to be ready for computation
operator *()

� Signal that computation on current segment is �nished
operator ++(int)

� Check if end of data is reached

operator ==()

25 of 49

Double Bu�ering - Operations - Input Segment

� Start loading �rst segment (lead-in)
operator =()

� Start loading next segment
operator ++(int)

� Wait for segment to be ready for computation
operator *()

� Signal that computation on current segment is �nished
operator ++(int)

� Check if end of data is reached
operator ==()

25 of 49

Double Bu�ered Segmented Input Iterator

1 template<typename T> struct remote_segmented_input_iterator
2 {
3 // allocate required buffers
4 remote_segmented_input_iterator(...) {}
5

6 // start loading first buffer
7 void operator= (const addr64 & base_address_) { }
8

9 // wait for current segment to arrive and return pointer to it
10 T* operator *() {}
11

12 // start loading new data and increment current segment
13 inline void operator++(int) {}
14

15 // check if iterator has reached a position
16 bool operator ==(const addr64 & b) const {}
17 };

26 of 49

Double Bu�ered Segmented Iterator Example

1 remote_segmented_input_iterator<float> it(depth,
2 ssize, slicer(ssize));
3 remote_segmented_output_iterator<float> ot(depth,
4 ssize, slicer(ssize));
5

6 for(it = input, ot = output; /* lead-in */
7 it!=input+overall_size; /* check end */
8 it++, ot++) // load next, store current
9 {

10 float * in = *it; float * out = *ot; // synchronize
11 harris_simd(in, out, cd->slice_dimx, cd->slice_dimy,
12 0, PADY, buf1.get(), buf2.get(), buf3.get());
13 }

27 of 49

Double Bu�ered Segmented Iterator - Slicer

SPE3

SPE2

SPE0

SPE1

28 of 49

Double Bu�ered Segmented Iterator - Slicer

SPE3

SPE2

SPE0

SPE1

28 of 49

Double Bu�ered Segmented Iterator - Slicer

SPE3

SPE2

SPE0

SPE1

29 of 49

Double Bu�ered Segmented Iterator - Slicer

SPE3

SPE2

SPE0

SPE1

29 of 49

Double Bu�ered Segmented Iterator - Slicer

SPE3

SPE2

SPE0

SPE1

30 of 49

Double Bu�ered Segmented Iterator - Slicer

SPE3

SPE2

SPE0

SPE1

30 of 49

Double Bu�ered Segmented Iterator - Slicer

SPE3

SPE2

SPE0

SPE1

31 of 49

Double Bu�ered Segmented Iterator - Slicer

SPE3

SPE2

SPE0

SPE1

31 of 49

Multi-Bu�ered Segmented Iterator - Features

� remote_vector<T> for more expressive code:

1 // PPE:
2 std::vector<float> v(1024*1024); kernel(v);
3 // SPE:
4 kernel(remote_vector<float> v) {
5 remote_segmented_input_iterator<T> it(depth, ssize, slicer(ssize));
6 for(it = v.begin(); it!=v.end(); it++) {
7 float * in = *it;
8 /* computation */
9 }

10 }

� Read, write- and read-write Iterators with minimum bu�er depth of 3

� Various slicers

32 of 49

Multi-Bu�ered Segmented Iterator - Features

� remote_vector<T> for more expressive code:

1 // PPE:
2 std::vector<float> v(1024*1024); kernel(v);
3 // SPE:
4 kernel(remote_vector<float> v) {
5 remote_segmented_input_iterator<T> it(depth, ssize, slicer(ssize));
6 for(it = v.begin(); it!=v.end(); it++) {
7 float * in = *it;
8 /* computation */
9 }

10 }

� Read, write- and read-write Iterators with minimum bu�er depth of 3

� Various slicers

32 of 49

Multi-Bu�ered Segmented Iterator - Features

� remote_vector<T> for more expressive code:

1 // PPE:
2 std::vector<float> v(1024*1024); kernel(v);
3 // SPE:
4 kernel(remote_vector<float> v) {
5 remote_segmented_input_iterator<T> it(depth, ssize, slicer(ssize));
6 for(it = v.begin(); it!=v.end(); it++) {
7 float * in = *it;
8 /* computation */
9 }

10 }

� Read, write- and read-write Iterators with minimum bu�er depth of 3

� Various slicers

32 of 49

2D Multi-Bu�ered Segmented Iterator

� Native 2D data transfer support through DMA lists

� Di�erence to regular iterator:
� Slice size is 2D
� Supports remote_vector_2D
� Slicer takes 2D arguments:

slicer_2D(size_2d_t vector_dim, size_2d_t slice_dim);

� Ideal for image processing:

33 of 49

2D Multi-Bu�ered Segmented Iterator

� Native 2D data transfer support through DMA lists
� Di�erence to regular iterator:

� Slice size is 2D
� Supports remote_vector_2D
� Slicer takes 2D arguments:

slicer_2D(size_2d_t vector_dim, size_2d_t slice_dim);

� Ideal for image processing:

33 of 49

2D Multi-Bu�ered Segmented Iterator

� Native 2D data transfer support through DMA lists
� Di�erence to regular iterator:

� Slice size is 2D

� Supports remote_vector_2D
� Slicer takes 2D arguments:

slicer_2D(size_2d_t vector_dim, size_2d_t slice_dim);

� Ideal for image processing:

33 of 49

2D Multi-Bu�ered Segmented Iterator

� Native 2D data transfer support through DMA lists
� Di�erence to regular iterator:

� Slice size is 2D
� Supports remote_vector_2D

� Slicer takes 2D arguments:
slicer_2D(size_2d_t vector_dim, size_2d_t slice_dim);

� Ideal for image processing:

33 of 49

2D Multi-Bu�ered Segmented Iterator

� Native 2D data transfer support through DMA lists
� Di�erence to regular iterator:

� Slice size is 2D
� Supports remote_vector_2D
� Slicer takes 2D arguments:

slicer_2D(size_2d_t vector_dim, size_2d_t slice_dim);

� Ideal for image processing:

33 of 49

2D Multi-Bu�ered Segmented Iterator

� Native 2D data transfer support through DMA lists
� Di�erence to regular iterator:

� Slice size is 2D
� Supports remote_vector_2D
� Slicer takes 2D arguments:

slicer_2D(size_2d_t vector_dim, size_2d_t slice_dim);

� Ideal for image processing:

33 of 49

2D Multi-Bu�ered Segmented Iterator

� Native 2D data transfer support through DMA lists
� Di�erence to regular iterator:

� Slice size is 2D
� Supports remote_vector_2D
� Slicer takes 2D arguments:

slicer_2D(size_2d_t vector_dim, size_2d_t slice_dim);

� Ideal for image processing:

33 of 49

2D Multi-Bu�ered Segmented Iterator

� Native 2D data transfer support through DMA lists
� Di�erence to regular iterator:

� Slice size is 2D
� Supports remote_vector_2D
� Slicer takes 2D arguments:

slicer_2D(size_2d_t vector_dim, size_2d_t slice_dim);

� Ideal for image processing:

SPE3

SPE2

SPE0

SPE1

33 of 49

High-Level Inter-SPE Communication: MPI

� Interprocess communication by message passing, SPEs send and
receive message

� API speci�cation, used in high performance computing

Features:

� Virtual topology of processes

� Synchronization

� Point to point communication

� Collective communication

34 of 49

High-Level Inter-SPE Communication: MPI

� Interprocess communication by message passing, SPEs send and
receive message

� API speci�cation, used in high performance computing

Features:

� Virtual topology of processes

� Synchronization

� Point to point communication

� Collective communication

34 of 49

High-Level Inter-SPE Communication: MPI

� Interprocess communication by message passing, SPEs send and
receive message

� API speci�cation, used in high performance computing

Features:

� Virtual topology of processes

� Synchronization

� Point to point communication

� Collective communication

34 of 49

High-Level Inter-SPE Communication: MPI

� Interprocess communication by message passing, SPEs send and
receive message

� API speci�cation, used in high performance computing

Features:

� Virtual topology of processes

� Synchronization

� Point to point communication

� Collective communication

34 of 49

High-Level Inter-SPE Communication: MPI

� Interprocess communication by message passing, SPEs send and
receive message

� API speci�cation, used in high performance computing

Features:

� Virtual topology of processes

� Synchronization

� Point to point communication

� Collective communication

34 of 49

High-Level Inter-SPE Communication: MPI

� Interprocess communication by message passing, SPEs send and
receive message

� API speci�cation, used in high performance computing

Features:

� Virtual topology of processes

� Synchronization

� Point to point communication

� Collective communication

34 of 49

High-Level Inter-SPE Communication: MPI

� Interprocess communication by message passing, SPEs send and
receive message

� API speci�cation, used in high performance computing

Features:

� Virtual topology of processes

� Synchronization

� Point to point communication

� Collective communication

34 of 49

MPI Collectives - Broadcast

35 of 49

MPI Collectives - Scatter and Gather

36 of 49

MPI Collectives - Reduce and All to All

37 of 49

MPI Interface - Example

1 communicator world;
2

3 if (world.rank() == 0)
4 {
5 char s1[] = "Hello";
6 world.send(1, 0, s1, sizeof(s1));
7 char s2[6];
8 world.recv(1, 1, s2, sizeof(s2));
9 }

10 else if (world.rank() == 1)
11 {
12 char s1[6];
13 world.recv(0, 0, s1, sizeof(s1));
14 char s2[] = "world";
15 world.send(0, 1, s2, sizeof(s2));
16 }
17 // Hello world from SPE 0, Hello world from SPE 1

38 of 49

MPI Interface - Communicator

1 class communicator
2 {
3 void barrier();
4

5 template <typename T> void send(int dst, int tag, const T& value);
6 template <typename T> void send(int dst, int tag, const T* values, int n);
7 template <typename T> request isend(int dst, int tag, const T& value);
8 ...
9 template <typename T> status recv(int source, int tag, T& value);

10 template <typename T> status recv(int source, int tag, T* values, int n);
11 template <typename T> request irecv(int source, int tag, T& value);
12 ...
13 communicator include(uint16_t first, uint16_t last);
14 communicator exclude(uint16_t first, uint16_t last);
15 friend bool operator== (const communicator& c1, const communicator& c2);
16 };

39 of 49

MPI Interface - Request and Status

1 // represents current request
2 class request
3 {
4 request() {};
5 status wait();
6 boost::optional<status> test();
7 };
8

9 // represents status of a request
10 class status
11 {
12 int32_t source() const;
13 int32_t tag() const;
14 int32_t error() const;
15 };

40 of 49

MPI Interface - Collectives Interface

1 template<typename T, typename Op>
2 void reduce(const communicator & comm, const T & in,
3 T & out, Op op, int root);
4

5 template<typename T, typename Op>
6 void reduce(const communicator & comm, const T & in,
7 Op op, int root);
8

9 template<typename T, typename Op>
10 void reduce(const communicator & comm, const T * in,
11 int n, T * out, Op op, int root);
12

13 template<typename T, typename Op>
14 void reduce(const communicator & comm, const T * in,
15 int n, Op op, int root);

41 of 49

MPI Header

0 1 2 3 4 5 6 7

0

8

16

24

communicator identifier

tag datatype

datasize

address

opflags

prependsize appendsize

controlflags

42 of 49

MPI Protocol

SEND

reset SYN

send header

received header?

noyes

header match?

no

ERROR

yes
put data async
send ACK async

DMA sync

received header?

noSYN

FINISHED

ACK

reset ACK
send RDY

preprocess data
prepare header

token consuming
non-consuming
async barrier

RECEIVE

reset SYN

send header

received header?

noyes

header match?

no

ERROR

yes

received ACK?

no

FINISHED

yes

reset ACK
postprocess data

send RDY

get data async

DMA sync
postprocess data

send ACK

preprocess data
prepare header

43 of 49

MPI Types

We don't do Boost.Serialization but

� you may register your POD type:

1 struct gps_position { /* POD */ };
2 namespace cbe_mpi
3 {
4 CBE_MPI_USER_POD_DATATYPE(gps_position);
5 }

� or you may specialize send/receive methods:

1 template <typename T>
2 request isend(cbe_mpi::communicator & comm, int dst,
3 int tag, T data, int n);
4

5 template <typename T>
6 request irecv(cbe_mpi::communicator & comm, int src,
7 int tag, T data, int n);

44 of 49

Registering POD Types

How we identify your type:

1 template<typename T>
2 struct cbe_mpi_user_pod_type_id { static void get() {} };
3

4 #define CBE_MPI_USER_POD_DATATYPE(CppType) \
5 template<> \
6 struct is_mpi_datatype< CppType > \
7 : boost::mpl::bool_<true> {}; \
8 \
9 inline int get_mpi_datatype(const CppType &) \

10 { \
11 return 0x80000000 | \
12 (int)(&cbe_mpi_user_pod_type_id< CppType >::get); \
13 }

45 of 49

Sending std::vector

1 template <typename T>
2 request isend(cbe_mpi::communicator com,
3 int dest, int tag, const std::vector<T> * values, int)
4 {
5 int vectorsize = values->size();
6 com.send(dest, tag, &vectorsize, 1);
7 return com.isend(dest, tag, &(*values)[0], vectorsize);
8 }
9

10 template <typename T>
11 request irecv(cbe_mpi::communicator com,
12 int source, int tag, std::vector<T> * values, int)
13 {
14 int vectorsize;
15 com.recv(source, tag, &vectorsize, 1);
16 values->resize(vectorsize);
17 return com.irecv(source, tag, &(*values)[0], vectorsize);
18 }

46 of 49

MPI - Sending Unaligned Data

source

destination

Sbegin Saligned

main block

main block

Saligned_endSend

Dbegin Daligned Daligned_endDend

47 of 49

MPI - Sending Unaligned Data

source

destination

32 byte buffercopy to bufferSbegin Saligned

main block

main block

Saligned_endSend

Dbegin Daligned Daligned_endDend

47 of 49

MPI - Sending Unaligned Data

source

destination

32 byte buffer

aligned DMA put
main block

aligned
DMA put

buffer

copy to bufferSbegin Saligned

main block

main block

Saligned_endSend

Dbegin Daligned Daligned_endDend

47 of 49

MPI - Sending Unaligned Data

source

destination

32 byte buffer

aligned DMA put
main block

aligned
DMA put

buffer

copy to buffer

in place copy at destination

Sbegin Saligned

main block

main block

Saligned_endSend

Dbegin Daligned Daligned_endDend

{ {Daligned -Saligned Daligned_end - Saligned_end

47 of 49

MPI - Sending Unaligned Data

source

destination

32 byte buffer

aligned DMA put
main block

aligned
DMA put

buffer

copy to buffer

copy from buffer

in place copy at destination

Sbegin Saligned

main block

main block

Saligned_endSend

Dbegin Daligned Daligned_endDend

{ {Daligned -Saligned Daligned_end - Saligned_end

47 of 49

Conclusion

� Build process can be simpli�ed with CMake

� Boilerplate code can be simpli�ed with the help of Boost (e.g. PP)

� Ambiguity of functions or macros in di�erent compilation units can
be exploited

� Optimal Boost solutions have to be adapted to �t embedded
architecture

� Sweet spot between generic code and e�ciency must be found

� Di�cult low-level code can be wrapped nicely in C++ Concepts

� C++ Concepts can be even more powerful on special purpose
hardware

48 of 49

Conclusion

� Build process can be simpli�ed with CMake

� Boilerplate code can be simpli�ed with the help of Boost (e.g. PP)

� Ambiguity of functions or macros in di�erent compilation units can
be exploited

� Optimal Boost solutions have to be adapted to �t embedded
architecture

� Sweet spot between generic code and e�ciency must be found

� Di�cult low-level code can be wrapped nicely in C++ Concepts

� C++ Concepts can be even more powerful on special purpose
hardware

48 of 49

Conclusion

� Build process can be simpli�ed with CMake

� Boilerplate code can be simpli�ed with the help of Boost (e.g. PP)

� Ambiguity of functions or macros in di�erent compilation units can
be exploited

� Optimal Boost solutions have to be adapted to �t embedded
architecture

� Sweet spot between generic code and e�ciency must be found

� Di�cult low-level code can be wrapped nicely in C++ Concepts

� C++ Concepts can be even more powerful on special purpose
hardware

48 of 49

Conclusion

� Build process can be simpli�ed with CMake

� Boilerplate code can be simpli�ed with the help of Boost (e.g. PP)

� Ambiguity of functions or macros in di�erent compilation units can
be exploited

� Optimal Boost solutions have to be adapted to �t embedded
architecture

� Sweet spot between generic code and e�ciency must be found

� Di�cult low-level code can be wrapped nicely in C++ Concepts

� C++ Concepts can be even more powerful on special purpose
hardware

48 of 49

Conclusion

� Build process can be simpli�ed with CMake

� Boilerplate code can be simpli�ed with the help of Boost (e.g. PP)

� Ambiguity of functions or macros in di�erent compilation units can
be exploited

� Optimal Boost solutions have to be adapted to �t embedded
architecture

� Sweet spot between generic code and e�ciency must be found

� Di�cult low-level code can be wrapped nicely in C++ Concepts

� C++ Concepts can be even more powerful on special purpose
hardware

48 of 49

Conclusion

� Build process can be simpli�ed with CMake

� Boilerplate code can be simpli�ed with the help of Boost (e.g. PP)

� Ambiguity of functions or macros in di�erent compilation units can
be exploited

� Optimal Boost solutions have to be adapted to �t embedded
architecture

� Sweet spot between generic code and e�ciency must be found

� Di�cult low-level code can be wrapped nicely in C++ Concepts

� C++ Concepts can be even more powerful on special purpose
hardware

48 of 49

Conclusion

� Build process can be simpli�ed with CMake

� Boilerplate code can be simpli�ed with the help of Boost (e.g. PP)

� Ambiguity of functions or macros in di�erent compilation units can
be exploited

� Optimal Boost solutions have to be adapted to �t embedded
architecture

� Sweet spot between generic code and e�ciency must be found

� Di�cult low-level code can be wrapped nicely in C++ Concepts

� C++ Concepts can be even more powerful on special purpose
hardware

48 of 49

Conclusion

� Build process can be simpli�ed with CMake

� Boilerplate code can be simpli�ed with the help of Boost (e.g. PP)

� Ambiguity of functions or macros in di�erent compilation units can
be exploited

� Optimal Boost solutions have to be adapted to �t embedded
architecture

� Sweet spot between generic code and e�ciency must be found

� Di�cult low-level code can be wrapped nicely in C++ Concepts

� C++ Concepts can be even more powerful on special purpose
hardware

48 of 49

Thank you for you kind attention.

49 of 49

