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Why a talk about a library for the Cell in 2011

� Heterogeneous and composable architectures are not uncommon,
powerful and worth studying.

� We present useful concepts that apply to all of them.

� We illustrate the lessons we learned as we used Boost libraries on a
constricted platform and

� elaborate what choices we had to make and why we made them as
we created a Boost-like library for this platform.
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Cell Broadband Engine - Schematic
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A similar architecture - Multi-GPU Schematic
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Cell Broadband Engine - The good stu�

� Power architecture core paired with up to 8 streamlined vector
co-processors: 204.8 GFlops/s (single) 102.4 GFlops/s (double)

� High data transfer bandwidth: theoretical 204.8 GB/s

� Good performance/watt (0.87 double precision GFlops/s per Watt
for IBM BladeCenter QS22)

Due to these advantages, the CBE is a good �t for multimedia and
vector processing applications as well as scienti�c computation.
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Cell Broadband Engine - The bad stu�

� Distributed system on one chip, explicit communication necessary
� SPE Memory limitations

� 256kB for code and data per SPE
� no over�ow detection

� Communication intricacies
� packet size
� address alignment
� explicit DMA

� Optimization for speed
� SIMD (assembler-like)
� convoluted pipeline mechanism

Due to these restrictions, the complexity of programming the CBE is
comparable to writing code for embedded systems.
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Writing code for the CBE

� PPE and SPE entry points in separate main functions

� Compilers: ppu-gcc, spu-gcc

� SPE object �le passed to ppu-embedspu to generate library
exports symbol that is accessible from PPE code

� PPE creates thread for each SPE and loads the symbol

� Argument passed to thread is accessible in SPE through argument
vector

� Usual approach: argument is pointer to structure in main memory;
structure is loaded to SPE through explicit DMA call:

1 /* DMA control block information from system memory. */
2 mfc_get((void*)&parms, parm_ptr, (sizeof(parms)+15)&~0xF, tag, td, rd);
3 mfc_write_tag_mask(1<<tag);
4 mfc_read_tag_status_all(); /* Wait for DMA to complete */

7 of 49



Writing code for the CBE

� PPE and SPE entry points in separate main functions

� Compilers: ppu-gcc, spu-gcc

� SPE object �le passed to ppu-embedspu to generate library
exports symbol that is accessible from PPE code

� PPE creates thread for each SPE and loads the symbol

� Argument passed to thread is accessible in SPE through argument
vector

� Usual approach: argument is pointer to structure in main memory;
structure is loaded to SPE through explicit DMA call:

1 /* DMA control block information from system memory. */
2 mfc_get((void*)&parms, parm_ptr, (sizeof(parms)+15)&~0xF, tag, td, rd);
3 mfc_write_tag_mask(1<<tag);
4 mfc_read_tag_status_all(); /* Wait for DMA to complete */

7 of 49



Writing code for the CBE

� PPE and SPE entry points in separate main functions

� Compilers: ppu-gcc, spu-gcc

� SPE object �le passed to ppu-embedspu to generate library
exports symbol that is accessible from PPE code

� PPE creates thread for each SPE and loads the symbol

� Argument passed to thread is accessible in SPE through argument
vector

� Usual approach: argument is pointer to structure in main memory;
structure is loaded to SPE through explicit DMA call:

1 /* DMA control block information from system memory. */
2 mfc_get((void*)&parms, parm_ptr, (sizeof(parms)+15)&~0xF, tag, td, rd);
3 mfc_write_tag_mask(1<<tag);
4 mfc_read_tag_status_all(); /* Wait for DMA to complete */

7 of 49



Writing code for the CBE

� PPE and SPE entry points in separate main functions

� Compilers: ppu-gcc, spu-gcc

� SPE object �le passed to ppu-embedspu to generate library
exports symbol that is accessible from PPE code

� PPE creates thread for each SPE and loads the symbol

� Argument passed to thread is accessible in SPE through argument
vector

� Usual approach: argument is pointer to structure in main memory;
structure is loaded to SPE through explicit DMA call:

1 /* DMA control block information from system memory. */
2 mfc_get((void*)&parms, parm_ptr, (sizeof(parms)+15)&~0xF, tag, td, rd);
3 mfc_write_tag_mask(1<<tag);
4 mfc_read_tag_status_all(); /* Wait for DMA to complete */

7 of 49



Writing code for the CBE

� PPE and SPE entry points in separate main functions

� Compilers: ppu-gcc, spu-gcc

� SPE object �le passed to ppu-embedspu to generate library
exports symbol that is accessible from PPE code

� PPE creates thread for each SPE and loads the symbol

� Argument passed to thread is accessible in SPE through argument
vector

� Usual approach: argument is pointer to structure in main memory;
structure is loaded to SPE through explicit DMA call:

1 /* DMA control block information from system memory. */
2 mfc_get((void*)&parms, parm_ptr, (sizeof(parms)+15)&~0xF, tag, td, rd);
3 mfc_write_tag_mask(1<<tag);
4 mfc_read_tag_status_all(); /* Wait for DMA to complete */

7 of 49



Writing code for the CBE

� PPE and SPE entry points in separate main functions

� Compilers: ppu-gcc, spu-gcc

� SPE object �le passed to ppu-embedspu to generate library
exports symbol that is accessible from PPE code

� PPE creates thread for each SPE and loads the symbol

� Argument passed to thread is accessible in SPE through argument
vector

� Usual approach: argument is pointer to structure in main memory;
structure is loaded to SPE through explicit DMA call:

1 /* DMA control block information from system memory. */
2 mfc_get((void*)&parms, parm_ptr, (sizeof(parms)+15)&~0xF, tag, td, rd);
3 mfc_write_tag_mask(1<<tag);
4 mfc_read_tag_status_all(); /* Wait for DMA to complete */

7 of 49



Writing code for the CBE

� PPE and SPE entry points in separate main functions

� Compilers: ppu-gcc, spu-gcc

� SPE object �le passed to ppu-embedspu to generate library
exports symbol that is accessible from PPE code

� PPE creates thread for each SPE and loads the symbol

� Argument passed to thread is accessible in SPE through argument
vector

� Usual approach: argument is pointer to structure in main memory;
structure is loaded to SPE through explicit DMA call:

1 /* DMA control block information from system memory. */
2 mfc_get((void*)&parms, parm_ptr, (sizeof(parms)+15)&~0xF, tag, td, rd);
3 mfc_write_tag_mask(1<<tag);
4 mfc_read_tag_status_all(); /* Wait for DMA to complete */

7 of 49



Writing code for the CBE - continued

� "Getting started" can be tedious when developing for the CELL
since compilation procedure and startup are not trivial

� CMake to the rescue:
� Great tool to simplify basically any build-related steps
� Find all required libraries and binaries on the system
� Low-level macros: ACTIVATE_PPE_COMPILER(), ACTIVATE_SPE_COMPILER()
� ADD_SPE_MODULE(target symbol file0 file1 ... fileN)

� C++ and Boost to the rescue:
� Wrap recurring boilerplate code in clearly laid out functions and

classes
� A kernel function should be declared and behave like a free function
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Cell-MPI Bootstrapping

� Launching a kernel function passing a data structure
struct mydatastruct { int x; int y; int z; };

� Kernel is de�ned with:

1 BEGIN_CELL_KERNEL()
2 {
3 mydatastruct * ptr;
4 SPE_Custom(ptr);
5 RETURN((ptr->x + ptr->y) * ptr->z);
6 }
7 END_CELL_KERNEL()

� In PPE code the kernel is registered with
PPE_REGISTER_KERNEL(kernel);

� The runtime is initialized with PPE_Init();
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Cell-MPI Bootstrapping - continued

� The kernel is then called asynchronously:

1 mydatastruct mydata(1, 5, 7);
2 PPE_Run(kernel, mydata);

� The PPE can wait for kernel completion: PPE_Sync();

� and access the kernels return value:

1 int returnvalues[CBE_MPI_NUM_SPE];
2 PPE_Return(&returnvalues[0]);

� The runtime is �nalized with PPE_Finalize();
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Cell-MPI Bootstrapping Mechanism

PPE_Init
- allocate thread- and control block

PPE_Run
- load SPE program
- init control block incl. user data
- create and start threads

SPE_Init
- load control block 
- load user data

- wait for message from SPE
- send run message to SPE

- send message to PPE
- wait for message from PPE

SPE_Finalize
- send return value

runshutdown

PPE_Sync
- wait for return value, check for error

PPE_Finalize
- send message to shutdown kernel

synchronization

synchronization

after synchronization 
a kernel can be 
started again

fork

join

kernel user code

kernel
loop
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Cell-MPI Bootstrapping - Boosti�ed

� A kernel can be declared in both PPE and SPE code with:

1 SPE_FUNCTION(kernel_, kernel, (int x) (int y) (int z) );

� and implemented as a free function in SPE code

1 int kernel(int x, int y, int z)
2 {
3 return (x+y) * z;
4 }

� It can then be called as a free function from PPE code:

1 int * returnvalues = kernel(2, 5, 7);

� or asynchronously:

1 kernel_async(2, 5, 7);
2 PPE_Sync();
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So we do C++ but...

The architecture forces some restrictions especially on the SPE part of
the library:

� Compilation without run-time type information

� No dynamic memory allocation for predictable footprint

� Custom, lightweight STL compatible allocators

� Exception handling deactivated
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Exception emulation

Due to architecture limitations we emulate exceptions:

� An exception stops the kernel and noti�es the PPE

� Only an error code is "thrown":

1 #define THROW(errno) {spe_errno = errno ; SPE_Finalize(-1); exit(0);}

� The PPE translates the error code into real exceptions:

1 struct spe_error_bundle
2 { std::vector<spe_error_data> exception_info; };

1 typedef boost::error_info<struct tag_spe_error_info_bundle,
2 spe_error_bundle> spe_error_info_bundle;

1 struct spe_runtime_exception : virtual boost::exception {};
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Exception emulation - continued

� If desired SPE exceptions can interrupt PPE execution

� To de�ne errors we use the same trick as in boosti�ed
bootstrapping:

1 ERROR(MPI_TAG_MISMATCH, 7, "Send receive tag mismatch")
2 ERROR(BOOST_FUNCTION_BAD_CALL, 12, "Bad boost function call")
3 ERROR(BAD_ALLOC, 14, "bad alloc")

� Compiled with the SPE compiler (#ifdef _SPE_) generates:

1 enum { MPI_TAG_MISMATCH = 7, BOOST_FUNCTION_BAD_CALL = 12,
2 BAD_ALLOC = 14 };

� And with the PPE compiler generates a vector of objects:

1 struct spe_error_struct
2 { int id; const char * symbol; const char * message; };
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Unit Testing

� Boost.Test is great but builds don't �t SPEs:
libboost_unit_test_framework.so.1.45.0: 998kB

� First idea: boost/detail/lightweight_test.hpp

misses a lot of the Boost.Test goodness

Enter SPE-Unit:

� Compromise between lightweight and feature-complete

� Designed after Boost.Test
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Unit Testing - SPE Unit Features

� Only one test suite is available: CBE_MPI_SPEUNIT_AUTO_TEST_SUITE();

� Tests are started explicitly:

1 uint32_t result = CBE_MPI_SPEUNIT_RUN_TEST_SUITE();
2 SET_RETURN_VALUE(result);

� The powerfull AUTO_TEST_CASE_TEMPLATE(testname, T, typelist)

and a normal template TEST_CASE_TEMPLATE(testname) are included

� Di�erent test tool levels are supported: WARN_*, CHECK_*, REQUIRE_*

� Strings can be disabled to reduce overhead (silent mode)

� Emulated SPE exceptions can be validated with test tools like
CBE_MPI_REQUIRE_THROW
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Unit Testing - Example

1 typedef boost::mpl::vector_c<int,1,2,4,8,16> aligned_alloc_alignments;
2

3 CBE_MPI_SPEUNIT_AUTO_TEST_SUITE();
4

5 CBE_MPI_SPEUNIT_AUTO_TEST_CASE_TEMPLATE( aligned_malloc_free_test, T,
6 aligned_alloc_alignments )
7 {
8 aligned_ptr<void,T::value> ptr = aligned_malloc<T::value>(T::value);
9 CBE_MPI_SPEUNIT_REQUIRE_EQUAL(is_aligned<T::value>(ptr.get()),true);

10 cbe_mpi::aligned_free(ptr);
11 CBE_MPI_SPEUNIT_REQUIRE_EQUAL(ptr.get(),((void*)(0)));
12 }
13

14 int kernel(void)
15 {
16 uint32_t result = CBE_MPI_SPEUNIT_RUN_TEST_SUITE();
17 SET_RETURN_VALUE(result);
18 }

18 of 49



Data Transfer - Single Bu�er

ii = in.get();
oo = out.get();
        
for(int i=0; i<iterations; i++) {

  spe_ppe_get_c(in.get(), cd->inbuf1+(SPE_Rank()+i*SPE_Size())*slicesize*sizeof(float),
    slicesize_padded*sizeof(float));

  harris_simd(ii, oo, cd->slice_dimx, cd->slice_dimy, 0, PADY, buf1.get(), buf2.get(), buf3.get());

  spe_ppe_put_c(cd->outbuf1+(SPE_Rank()+i*SPE_Size())*slicesize*sizeof(float) +
    (cd->slice_dimx*PADY)*sizeof(float), oo, slicesize*sizeof(float));
}
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Data Transfer

load1 compute1 store1 load2 compute2 store2
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Data Transfer - Double Bu�ering
spe_ppe_get_async_c(in1.get(), cd->inbuf1+SPE_Rank()*slicesize*sizeof(float), slicesize_padded*sizeof(float), 9); 

for(int i=0; i<iterations; i++) {
  if(i%2 == 0) {
    spe_ppe_get_async_c(in2.get(), cd->inbuf1+(SPE_Rank()+(i+1)*SPE_Size())*slicesize*sizeof(float), 
      slicesize_padded*sizeof(float), 10);
      
    dma_synchronize_c(9); dma_synchronize_c(11);
    ii = in1.get(); oo = out1.get();
  } else {
    spe_ppe_get_async_c(in1.get(), cd->inbuf1+(SPE_Rank()+(i+1)*SPE_Size())*slicesize*sizeof(float), 
      slicesize_padded*sizeof(float), 9);
    
    dma_synchronize_c(10); dma_synchronize_c(12);
    ii = in2.get(); oo = out2.get();
  }

  harris_simd(ii, oo, cd->slice_dimx, cd->slice_dimy, 0, PADY, buf1.get(), buf2.get(), buf3.get());

  if(i%2 == 0) {
    spe_ppe_put_async_c(cd->outbuf1+(SPE_Rank()+i*SPE_Size())* slicesize*sizeof(float) +
      (cd->slice_dimx*PADY)*sizeof(float),  out1.get(), slicesize*sizeof(float), 11);
  } else {
    spe_ppe_put_async_c(cd->outbuf1+(SPE_Rank()+i*SPE_Size())* slicesize*sizeof(float) +
      (cd->slice_dimx*PADY)*sizeof(float), out2.get(), slicesize*sizeof(float), 12);
  }
}

spe_ppe_put_c(cd->outbuf1 + (SPE_Rank()+((iterations-1)*SPE_Size())) * slicesize*sizeof(float) +
  (cd->slice_dimx*PADY)*sizeof(float), oo, slicesize*sizeof(float));
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      (cd->slice_dimx*PADY)*sizeof(float),  out1.get(), slicesize*sizeof(float), 11);
  } else {
    spe_ppe_put_async_c(cd->outbuf1+(SPE_Rank()+i*SPE_Size())* slicesize*sizeof(float) +
      (cd->slice_dimx*PADY)*sizeof(float), out2.get(), slicesize*sizeof(float), 12);
  }
}

spe_ppe_put_c(cd->outbuf1 + (SPE_Rank()+((iterations-1)*SPE_Size())) * slicesize*sizeof(float) +
  (cd->slice_dimx*PADY)*sizeof(float), oo, slicesize*sizeof(float));
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sync
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Double Bu�ering - Operations - Input Segment

� Start loading �rst segment (lead-in)

operator =()

� Start loading next segment

operator ++(int)

� Wait for segment to be ready for computation

operator *()

� Signal that computation on current segment is �nished

operator ++(int)

� Check if end of data is reached

operator ==()
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Double Bu�ered Segmented Input Iterator

1 template<typename T> struct remote_segmented_input_iterator
2 {
3 // allocate required buffers
4 remote_segmented_input_iterator(...) {}
5

6 // start loading first buffer
7 void operator= (const addr64 & base_address_) { }
8

9 // wait for current segment to arrive and return pointer to it
10 T* operator *() {}
11

12 // start loading new data and increment current segment
13 inline void operator++(int) {}
14

15 // check if iterator has reached a position
16 bool operator ==(const addr64 & b) const {}
17 };
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Double Bu�ered Segmented Iterator Example

1 remote_segmented_input_iterator<float> it(depth,
2 ssize, slicer(ssize));
3 remote_segmented_output_iterator<float> ot(depth,
4 ssize, slicer(ssize));
5

6 for(it = input, ot = output; /* lead-in */
7 it!=input+overall_size; /* check end */
8 it++, ot++) // load next, store current
9 {

10 float * in = *it; float * out = *ot; // synchronize
11 harris_simd(in, out, cd->slice_dimx, cd->slice_dimy,
12 0, PADY, buf1.get(), buf2.get(), buf3.get());
13 }
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Double Bu�ered Segmented Iterator - Slicer

SPE3

SPE2

SPE0

SPE1
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Double Bu�ered Segmented Iterator - Slicer
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Multi-Bu�ered Segmented Iterator - Features

� remote_vector<T> for more expressive code:

1 // PPE:
2 std::vector<float> v(1024*1024); kernel(v);
3 // SPE:
4 kernel(remote_vector<float> v) {
5 remote_segmented_input_iterator<T> it(depth, ssize, slicer(ssize));
6 for(it = v.begin(); it!=v.end(); it++) {
7 float * in = *it;
8 /* computation */
9 }

10 }

� Read, write- and read-write Iterators with minimum bu�er depth of 3

� Various slicers
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2D Multi-Bu�ered Segmented Iterator

� Native 2D data transfer support through DMA lists

� Di�erence to regular iterator:
� Slice size is 2D
� Supports remote_vector_2D
� Slicer takes 2D arguments:

slicer_2D(size_2d_t vector_dim, size_2d_t slice_dim);

� Ideal for image processing:
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High-Level Inter-SPE Communication: MPI

� Interprocess communication by message passing, SPEs send and
receive message

� API speci�cation, used in high performance computing

Features:

� Virtual topology of processes

� Synchronization

� Point to point communication

� Collective communication
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MPI Collectives - Broadcast
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MPI Collectives - Scatter and Gather
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MPI Collectives - Reduce and All to All
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MPI Interface - Example

1 communicator world;
2

3 if (world.rank() == 0)
4 {
5 char s1[] = "Hello";
6 world.send(1, 0, s1, sizeof(s1));
7 char s2[6];
8 world.recv(1, 1, s2, sizeof(s2));
9 }

10 else if (world.rank() == 1)
11 {
12 char s1[6];
13 world.recv(0, 0, s1, sizeof(s1));
14 char s2[] = "world";
15 world.send(0, 1, s2, sizeof(s2));
16 }
17 // Hello world from SPE 0, Hello world from SPE 1
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MPI Interface - Communicator

1 class communicator
2 {
3 void barrier();
4

5 template <typename T> void send(int dst, int tag, const T& value);
6 template <typename T> void send(int dst, int tag, const T* values, int n);
7 template <typename T> request isend(int dst, int tag, const T& value);
8 ...
9 template <typename T> status recv(int source, int tag, T& value);

10 template <typename T> status recv(int source, int tag, T* values, int n);
11 template <typename T> request irecv(int source, int tag, T& value);
12 ...
13 communicator include(uint16_t first, uint16_t last);
14 communicator exclude(uint16_t first, uint16_t last);
15 friend bool operator== (const communicator& c1, const communicator& c2);
16 };
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MPI Interface - Request and Status

1 // represents current request
2 class request
3 {
4 request() {};
5 status wait();
6 boost::optional<status> test();
7 };
8

9 // represents status of a request
10 class status
11 {
12 int32_t source() const;
13 int32_t tag() const;
14 int32_t error() const;
15 };
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MPI Interface - Collectives Interface

1 template<typename T, typename Op>
2 void reduce(const communicator & comm, const T & in,
3 T & out, Op op, int root);
4

5 template<typename T, typename Op>
6 void reduce(const communicator & comm, const T & in,
7 Op op, int root);
8

9 template<typename T, typename Op>
10 void reduce(const communicator & comm, const T * in,
11 int n, T * out, Op op, int root);
12

13 template<typename T, typename Op>
14 void reduce(const communicator & comm, const T * in,
15 int n, Op op, int root);
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MPI Header

0 1 2 3 4 5 6 7

0

8

16

24

communicator identifier

tag datatype

datasize

address

opflags

prependsize appendsize

controlflags
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MPI Protocol

SEND

reset SYN

send header

received header?

noyes

header match?
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MPI Types

We don't do Boost.Serialization but

� you may register your POD type:

1 struct gps_position { /* POD */ };
2 namespace cbe_mpi
3 {
4 CBE_MPI_USER_POD_DATATYPE(gps_position);
5 }

� or you may specialize send/receive methods:

1 template <typename T>
2 request isend(cbe_mpi::communicator & comm, int dst,
3 int tag, T data, int n);
4

5 template <typename T>
6 request irecv(cbe_mpi::communicator & comm, int src,
7 int tag, T data, int n);
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Registering POD Types

How we identify your type:

1 template<typename T>
2 struct cbe_mpi_user_pod_type_id { static void get() {} };
3

4 #define CBE_MPI_USER_POD_DATATYPE(CppType) \
5 template<> \
6 struct is_mpi_datatype< CppType > \
7 : boost::mpl::bool_<true> {}; \
8 \
9 inline int get_mpi_datatype(const CppType &) \

10 { \
11 return 0x80000000 | \
12 (int)(&cbe_mpi_user_pod_type_id< CppType >::get); \
13 }
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Sending std::vector

1 template <typename T>
2 request isend(cbe_mpi::communicator com,
3 int dest, int tag, const std::vector<T> * values, int)
4 {
5 int vectorsize = values->size();
6 com.send(dest, tag, &vectorsize, 1);
7 return com.isend(dest, tag, &(*values)[0], vectorsize);
8 }
9

10 template <typename T>
11 request irecv(cbe_mpi::communicator com,
12 int source, int tag, std::vector<T> * values, int)
13 {
14 int vectorsize;
15 com.recv(source, tag, &vectorsize, 1);
16 values->resize(vectorsize);
17 return com.irecv(source, tag, &(*values)[0], vectorsize);
18 }

46 of 49



MPI - Sending Unaligned Data

source

destination

Sbegin Saligned

main       block

main       block

Saligned_endSend

Dbegin Daligned Daligned_endDend
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Conclusion

� Build process can be simpli�ed with CMake

� Boilerplate code can be simpli�ed with the help of Boost (e.g. PP)

� Ambiguity of functions or macros in di�erent compilation units can
be exploited

� Optimal Boost solutions have to be adapted to �t embedded
architecture

� Sweet spot between generic code and e�ciency must be found

� Di�cult low-level code can be wrapped nicely in C++ Concepts

� C++ Concepts can be even more powerful on special purpose
hardware
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Thank you for you kind attention.
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