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Schedule

e Theory
o GPU Hardware Architecture
o Stream Programming Model
o Writing GPU code

e Lunch Break

e Lab Assignments
o Numerical Integration
o Reduction

2 of 65
EEEEE————————————————————————



-
Why GPGPU?

e Speed up parallel applications (signal/image processing,
scientific/high performance computing)

e Focus on throughput rather than latency

* Small-sized data parallel applications (e.g. matrix multiplication)
compared to standard applications (e.g. a word processor)
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Nehalem Microarchitecture
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application latency, single
instruction stream runs fast
less than about 5% of the

area and the peak power are
consumed by arithmetic
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out-of-order control logic,
branch prediction, memory
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Programming Multi-Core Processors

To get high throughput on Multi-Core processors we can use
e Multithreading

#include <thread>
void computation(){ /* do computation =/ }
int main() {

std ::thread tl(computation);

std :: thread t2(computation);

}
e SIMD
#include <emmintrin.h>
~ ml28 x = x_array[i];  ml28 y =y array[i];
~ ml28 z = mm_add ps(x,y);
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Streaming Model of CPU
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From CPU to GPU (Step 1)

Remove unnecessary components that
speed up single instructon stream
execution

-l

9 of 65



We can have many of those simple cores

16 cores
16 simultaneous streams
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And we can add SIMD processing (Step2)




Of course we can have many of those

' ' ' ' e in this example: 16 cores
* 8 ALUs per core = 128
&N A i W o
* in practice (for example

GeForce GTX 480): 15
stream processors * 32
ALUs per processor =
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Problem: SIMD and Branching (1)

G (N (NN (N ALUS

EEEEEEEE Program Code

if (x > 0) {
y = pow(x, exp);
y *=Ks;

refl =y + Ka;
}else {

x=0;

refl = Ka;
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Problem: SIMD and Branching (2)

I ALUs
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y = pow(x, exp);
y *=Ks;
refl =y + Ka;

}else {
x=0;

refl = Ka;

}
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Problem: SIMD and Branching (3)

--------A'—US
I I Program Code
F F | F if (x > 0) {
x x X x | y=pow(x,exp); |
x ®x % x x | | y=ks ]
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Problem: SIMD and Branching (4)

Remember:

e Branching/divergence can impact performance significantly

e No real solution for this problem: try to avoid branching in between
SIMD boundaries

Clarification: there are 2 different ways to do SIMD:

e Explicit vector instructions (a little bit like writing assembler
without good tools) or:

e Scalar instructions, implicit vectorization by hardware
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Problem: Memory Latency (1)

“Surely there must be a less primitive way of making big changes in
the store than by pushing vast numbers of words back and forth
through the von Neumann bottleneck.” — John Backus

e Memory access latency many times higher than register access
(about 400-600 times)

e We removed all the good features that tackle the problem of
memory latency

Idea: while waiting we can do something else!
This is possible because of data parallelism.
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Problem: Memory Latency (2)

Data 0-7
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Multiple Execution Contexts (1)

@ Data 0-7 @ Data 8-15 @Data 16-23 @ Data 24-31
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Multiple Execution Contexts (2)

@ Data 0-7 @ Data 8-15 @Data 16-23 @ Data 24-31
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Multiple Execution Contexts (3)

@ Data 0-7 @ Data 8-15 @Data 16-23 @ Data 24-31
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Multiple Execution Contexts (4)
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Multiple Execution Contexts Benefit
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Multiple Execution Contexts Conclusion

e Great way to hide memory latency/automatically overlap memory
access and computation

e Stream processors can dynamically allocate contexts out of a large
bank of registers

e If code uses only few registers (a small execution context) many
contexts can run simultaneously

e If code uses many registers only a few big contexts can be created:
hiding memory access might not be as efficient in this case
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-
Model GPU
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Summary

e Use many simplified cores to run in parallel
e Pack cores full of ALUs (SIMD)

e Allow many execution contexts to interleave memory access and
computation
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Modern GPUs
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Nvidia G100 Architecture: Fermi

NVIDIA Therminology

e Streaming Multiprocessor

e Stream Processors (scalar ALU)

GeForce GTX 480

e Streaming Multiprocessors: 15

e Stream Processors per Streaming Multiprocessor: 32 = 480 cores
e Processor Clock: 1401 MHz

* Memory Bandwidth: 177.4 GB/s

e 1.3TFLOPS (comparison: Nehalem 100 - 200 GFLOP/s)

* Power requirement: 250W (recommended system power: 600W)
e Maximum GPU Temperature: 105C
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Fermi Overview
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Fermi Details
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GeForce GT 240

e Streaming Multiprocessors: 12

e Stream Processors per Streaming Multiprocessor: 8 = 92 cores
e Processor Clock: 1340 MHz

e Memory Bandwidth: 54.4 GB/s

385GFLOPS

TDP: 69W
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Memory

16kB 512kB

64kB (8kB Cache per SM)

all of memory (Cache between 6kB and 8kB)
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Memory

16kB 512kB

64kB (8kB Cache per SM)

all of memory (Cache between 6kB and 8kB)
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Compute Capability

1.1 G86, G84, G98, G96, G96b, G94, G94b, G92, G92b

1.3 GT200, GT200b
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http://www.flickr.com/photos/ecstaticist/

Introduction

e A way of programming massively parallel architectures

e |s closer to sequential paradigm than SIMD paradigm and thus
arguably easier to develop

Idea: Apply a kernel function written like a sequential program
to many data elements.
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Simple Example

Element-wise multiplication of 2 2D matrices:
a[yxdimX+x] = b[y*xdimX+x] * c[y*xdimX+x];
Sequential implementation:

for(int y=0; y<dimY; y++)
for(int x=0; x<dimX; x++)
afyxdimX+x] = b[y*dimX+x] * c[y*dimX+x];

CUDA implementation:

int x = threadldx.x;
int y = blockldx.x;
a[yxdimX+x] = b[yxdimX+x] * c[y*dimX+x];
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Simple Example continued

Full sequential code:

void elmatrix_mul(T * a, T * b, T * c,
int dimX, int dimy) {
for(int y=0; y<dimY; y++)
for(int x=0; x<dimX; x++)
aly*dimX+x] = b[y*dimX+x] * c[y*dimX+x];
}
elmatrix_mul(a, b, c, 512, 512);

Full CUDA code:

__global__ void elmatrix_mul(T * a, T * b, T * c)
{
int x = threadIdx.x; int y = blockIdx.x;
int dimX = blockDim.x;
afy*dimX+x] = b[y*dimX+x] * c[y*dimX+x];
}
elmatrix_mul<<<512, 512>>>(A, B, C);
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Thread Hierarchy

Grid

Block (0, 0)  Block (1,0) = Block '2, 0)
§§§§:§§§ e grids consists of blocks (1D or 2D)
Block (0, 1y Block (1,1) “Block (2, 1) .
e maximum number of blocks:
65535*65535
e blocks consist of threads (1D, 2D
Block (1, 1) or 3D)

e maximum number of threads per
block: 512 (1024 on CC2.0)

e gridsize*blocksize = number of
threads that are executed
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Thread Blocks

inside thread block: synchronization possible

__syncthreads() acts as a barrier at which all threads in the block
must wait before any is allowed to proceed

e Thread blocks are required to execute independently

e Inter-block synchronization only possible through kernel
exit/relaunch
e Kernel variables:

o block: blockldx.x blockldx.y gridDim.x gridDim.y

o thread: threadldx.x threadldx.y threadldx.z blockDim.x blockDim.y
blockDim.z

o to start multidimensional kernel:

dim3 numBlocks (64 ,64); dim3 threadsPerBlock(16,16);
kernel<<<numBlocks, threadsPerBlock >>>();
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Second Example

Element-wise multiplication of 2 3D matrices:
given dimX, dimY, dimZ, x, y, z, what is the kernel function?
a[?77] =

b[?77] * c[?77];
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Second Example

Element-wise multiplication of 2 3D matrices:
given dimX, dimY, dimZ, x, y, z, what is the kernel function?
a[z*dimX*dimY+y*dimX+x| =

blz*dimX*dimY+y*dimX+x] * c[z*dimX*dimY+y*dimX+x];
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Second Example

Element-wise multiplication of 2 3D matrices:

given dimX, dimY, dimZ, x, y, z, what is the kernel function?

a[z*dimX*dimY+y*dimX+x| =
blz*dimX*dimY+y*dimX+x] * c[z*dimX*dimY+y*dimX+x];

Sequential code:

void elmatrix_mul cpu 3d(T * a, T * b, T * c,
int dimX, int dimY, int dimz) {
for(int z=0; z<dimZ; z++)
for(int y=0; y<dimY; y++)
for(int x=0; x<dimX; x++)
a[z*dimX*dimY+y*dimX+x] =
b[z*dimX*dimY+y*dimX+x] * c[z*dimX*dimY+y*dimX+x];

}
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-
CUDA Solution (1)

__global__ void elmatrix_mul_gpu_kernel_3d(T * a, T * b, T * c, int dimX)
{

a[z*dimX*dimY+y*dimX+x] = b[z*dimX*dimY+y*dimX+x] * c[z*dimX*dimY+y*dimX+x];

}

elmatrix_mul_gpu_kernel_3d<<<dimz, dimY>>>(A, B, C, dimX);
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-
CUDA Solution (1)

Third dimension in for-loop

__global__ void elmatrix_mul_gpu_kernel_3d(T * a, T * b, T * c, int dimX)
{
int y = threadIdx.x;
int z = blockIdx.x;
int dimY = blockDim.x;
for(int x=0; x<dimX; x++)
a[z*dimX*dimY+y*dimX+x] = b[z*dimX*dimY+y*dimX+x] * c[z*dimX*dimY+y*dimX+x];

}

elmatrix_mul_gpu_kernel_3d<<<dimz, dimY>>>(A, B, C, dimX);
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-
CUDA Solution (2)

__global__ void elmatrix_mul_gpu_kernel_3d(T * a, T * b, T * c)

{

int x = ?;
inty =2?;
int z = ?;

L]
int dimX = ?;
int dimy = ?;
a[z*dimX*dimY+y*dimX+x] = b[z*dimX*dimY+y*dimX+x] * c[z*dimX*dimY+y*dimX+x];

}

dim3 gridsize(?);
dim3 blocksize(?);
elmatrix_mul_gpu_kernel_3d<<<gridsize, blocksize>>>(A, B, C);
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CUDA Solution (2)

2D grid

__global__ void elmatrix_mul_gpu_kernel_3d(T * a, T * b, T * c)
{
int x = threadIdx.x;
int y = blockIdx.x;
int z = blockIdx.y;
int dimX = blockDim.x;
int dimY = gridDim.x;
a[z*dimX*dimY+y*dimX+x] = b[z*dimX*dimY+y*dimX+x] * c[z*dimX*dimY+y*dimX+x];

}

dim3 gridsize(dimy, dimz);
dim3 blocksize(dimX);
elmatrix_mul_gpu_kernel_3d<<<gridsize, blocksize>>>(A, B, C);
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http://www.flickr.com/photos/swisscan/

Warps

A multiprocessor creates, manages, schedules, and executes threads
in groups of 32 parallel threads called warps

A multiprocessor partitions blocks into warps that get scheduled by
a warp scheduler for execution

They execute together but may diverge (branches are serialized)

Branch divergence occurs only within a warp; different warps
execute independently
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Efficient Memory Access (1)

e Memory access often limits the performance of kernels: we call

them memory-bound

Global memory access can take up to 400-600 times as long as
register access
For efficient memory access a half-warp must access:
o words of size 4, 8, or 16 bytes
words that are placed right next to each other

o
o words one after another (thread0 word0, threadl word1l..)
o naturally aligned addresses

If requirements are met 64-byte, 128-byte or 2x128-byte memory
transactions are issued

If not: 16 separate 32-byte memory are issued
This is the requirement for CC 1.0 and CC 1.1
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Efficient Memory Access (2)

For CC 1.2 and 1.3 the following protocol applies:

e Find the memory segment that contains the address requested by
the first thread

e Find all other active threads whose requested address lies in the
same segment

* Reduce the transaction size, if possible (if only the first part of the
segment is used, reduce the size)

e Carry out the memory transaction
e Repeat until all threads in the half-warp are serviced
For CC 2.0 a L2 cache is available
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Efficient Memory Access (3)

Memory access optimization ideas:

e Align memory naturally

Pad multi-dimensional memory to a multiple of the element size
and to a multiple of the half-warp size

* Optimize access pattern for locality (no strides within half-warp)

Utilize shared memory as cache: replace global memory access with
shared memory access
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Efficient Memory Access Example

0x6D24 0x6D24 0x6D24

AL LU,

T

LLLLLLILLITLILLL
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Shared Memory (1)

e Dedicated memory per multiprocessor

o Accessible per block (all threads in a block can access the same
data)

e Divided into equally-sized memory modules, called banks, for fast
access: memory read or write request made of n addresses that fall
in n distinct memory banks can be serviced simultaneously; if not:
bank conflict, serialization of access

e CC 2.0 32 banks, CC < 2.0 16 banks

49 of 65



Shared Memory (2)

Threads: Banks: Threads:
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Other Memories

e Local memory: thread private memory in global memory (slow) that
is used if no enough registers are used

e Constant memory: cached, read only, good to store constant kernel
parameters, physical constants, etc.

e Texture memory: very powerfull addressing modes including
interpolation, cached
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Memory Overview

On Chip Block 2 Cycles

Off Chip CC2.0 All Threads  400-600 Cycles (on cache miss)

Off Chip Yes All Threads DRAM, cached
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Heterogeneous Programming

Serial code

Parallel kernel

Kernel0<<<>>>()

Serial code

Parallel kernel

Kernell<<<>>>()

Host

Device

Grid 0

Block (0, 0)

Block (1, 0)

Block (2, 0)

R

Block (0, 1)

Block (1, 1)

Block (2, 1)

A

Device

Grid 0

Block (0, 0)

Block (1, 0)

Block (2, 0)
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e GPU as co-processor in host

application

GPU and CPU (device and host)
maintain their own separate
memory spaces in DRAM memory
Application manages the global,
constant, and texture memory
spaces visible to kernels through
calls to the CUDA runtime

Kernel calls are asynchronous

Overlapping of kernel execution
and memory transfer possible

CC 2.0: concurrent kernels




Timing CUDA Code

Many CUDA calls are asynchronous, use
cudaThreadSynchronize ()

when timing kernel calls, or use events:

cudaEvent _t start, stop;

float time; // time in ms
cudaEventCreate(&start);

cudaEventCreate(&stop);

cudaEventRecord(start, 0);

kernel<<<grid , threads >>>(d odata, d_idata);
cudaEventRecord( stop, 0 );
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
cudaEventDestroy(start); cudaEventDestroy (stop);
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Memory Management (1)

Allocate/deallocate global memory:

cudaMalloc(void *x devPtr, size t size)
cudaFree(void * devPtr)

Copy memory to the device, from the device, on the device:

cudaMemcpy(void * dst, const void x src,
size_t count, enum cudaMemcpyKind kind)

Shared memory static allocation inside kernel:

__shared float memory[BLOCK_ SIZE]

Pinned host memory for fast host <-> device transfers
cudaHostAlloc(void *% ptr, size t size, unsigned int flags)

cudaFreeHost(void = ptr)
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Memory Management (2)

Constant memory

__constant__ float constData[256];

float data[256];
cudaMemcpyToSymbol(constData, data, sizeof(data));

Asynchronous memory transfers

cudaMemcpyAsync(void x dst, const void % src, size t count,
enum cudaMemcpyKind kind, cudaStream t stream)
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Overlapping memory transfer and computation

cudaStream _t stream[2];
for (int i =0; i < 2; ++i)
cudaStreamCreate(&stream[i]); float* hostPtr;
cudaMallocHost ((void*x*)&hostPtr, 2 x size);
for (int i =0; i < 2; ++i)
cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i x size,
size , cudaMemcpyHostToDevice, stream[i]);
for (int i =0; i < 2; ++i)
MyKernel <<<100, 512, 0, stream[i]>>>
(outputDevPtr + i % size, inputDevPtr + i x size, size);
for (int i = 0; i < 2; ++i)
cudaMemcpyAsync(hostPtr + i x size,
outputDevPtr + i x size, size, cudaMemcpyDeviceToHost,
stream[i]);
cudaThreadSynchronize ();
for (int i = 0; i < 2; ++i)
cudaStreamDestroy(stream[i]);
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Error Handling

e All runtime functions return an error code

e Runtime maintains a per thread error variable that can be accessed
with
cudaError_t cudaGetLastError(void)

const charx cudaGetErrorString (cudaError _t error)

* Beware of asynchronous errors, most of them can not be reported
directly, use combination of

cudaError_t cudaGetLastError(void)
cudaThreadSynchronize ()
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split C/C++ and CUDA code
compile CUDA code to PTX

compile PTX to CUBIN

embedd in CPP code




-
NVCC Details

| -arcn
option

c
host code

‘gpu

nvopencc
~Xopence
€ ~opmons
filehash ,{ lu
H P Xpixas option

—< opxas - —ofe #

ubin or pix text

- ———————— —— =

Application independent

device code name. -ext it dir
« — _ __extintd
options.
— 1
cpp fat i repository)
cue
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.
Optimizing CUDA Code

e What should be the goal of the optimization?
e Answer: reach peak performance of device

e 2 possible metrics:

o Instruction throughput (e.g. GFLOP/s) for compute-bound kernels
o Data throughput (e.g. GB/s) for memory-bound kernels
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Examples for GeForce 480 GTX

Instruction Throughput

e Not trivial to determine the number of instructions per kernel

e The CUDA Visual Profiler helps (provides instruction throughput
ratio)

e Calculation of max GFLOP/s:

o Processor Clock 1401 MHz

o CUDA Cores 480

o fmad instruction counts as 2 flops

© 1.4GFLOP/s % 480 * 2 = 1344.96 GFLOPs/s

Data throughput

e Calculation of max GFLOP/s:

o Memory bus width: 384bit
o Memory clock: 924MHz
o 1848MHz * 384bijt x2 = 177.4GB/s
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Performance Optimization Strategies

e Focus first on finding ways to parallelize sequential code

e Use bandwidth of your computation as a metric to measure
performance

e Minimize data transfer between the host and the device
e Ensure global memory accesses are coalesced whenever possible

e Minimize the use of global memory and prefer shared memory
access where possible

e Avoid branching within warps
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